01.07.2004

Prof. Dr. D. Wolke Dr. K. Halupczok

Übungen zur Vorlesung **Funktionentheorie – SS 2004**

Blatt 10

Abgabe: Donnerstag, 08.07.2004, vor der Vorlesung

Aufgabe 1.

Welche Typen von isolierten Singularitäten in z=0 liegen vor bei

a)
$$f(z) = \frac{1}{e^{z^2} - 1}$$
, b) $f(z) = \frac{\sin^3 z}{z^5}$

c)
$$f(z) = z^3 e^{-\frac{1}{z}}$$
, d) $\frac{\log(z+1) - z}{z^2}$?

Aufgabe 2.

Die Funktionen f und g haben bei z_0 beide eine Nullstelle der Ordnung k (bzw. einen Pol k-ter Ordnung). Dann hat $\frac{f}{g}$ bei z_0 eine hebbare Singularität und es gilt

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \lim_{z \to z_0} \frac{f^{(k)}(z)}{g^{(k)}(z)}.$$

Aufgabe 3.

Sei f ganz, nicht konstant. Zeigen Sie:

- a) $f(\mathbb{C})$ liegt dicht in \mathbb{C} ,
- b) in $f(\mathbb{C})$ liegt mindestens eine reelle Zahl.

Aufgabe 4^* .

Beweisen Sie die folgende Verallgemeinerung des Maximum-Prinzips: Sei G ein beschränktes Gebiet, $f_1, \ldots, f_n \in H(G), f_1, \ldots, f_n$ stetig auf den Rand ∂G von G fortsetzbar. Dann nimmt

$$\varphi(z) := |f_1(z)| + \dots + |f_n(z)|$$

sein Maximum auf ∂G an.