Albert-Ludwigs-Universität Freiburg Institut für Mathematik Abteilung für Reine Mathematik

Prof. Dr. D. Wolke Dipl.-Math. S. Feiler

1: Mo 16-18, SR 318 Christian Marquardt	2: Di 11-13, SR 119 Jonas Unger	3: Di 11-13, SR 125 Michael Gutmann
4: Di 11-13, SR 112	5: Di 16-18, SR 119	6: Di 16-18, SR 125
Stefan Fischer	Kai Siebold	Arno Pauly
7: Do 11-13, SR 127 Sarah Marzi	8: Do 16-18, SR 414 Bianca Straub	9: Fr 11-13, HS II Elisabeth Wursthorn
10: Fr 11-13, SR 414	11: Fr 12-14, SR 218	Fragestunde: Do 09-11
Nicolas Ketterer	Christian Marquardt	Simon Feiler, SR 414

Übungen zur Vorlesung

Mathematik für Ingenieure und Informatiker I

Wintersemester 2007 / 2008

Übungsblatt Nummer 10

14. Januar 2008

Abgabe am Montag, den 21.01.2008 vor der Vorlesung Bitte die Lösungen mit Name, Matrikelnummer, Übungsnummer und Name des Tutors versehen.

Aufgabe 28

a) Berechnen Sie
$$\int_{-1}^{2} \frac{x^3 - 2 \cdot x}{(x^4 - 4 \cdot x^2 + 5)^2} dx!$$

b) Berechnen Sie eine Stammfunktion von
$$s: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & s\left(x\right) := \sin\left(x\right) \cdot x \end{array} \right\}!$$

c) Berechnen Sie eine Stammfunktion des Tangens'!

d) Berechnen Sie
$$\int_{1}^{e^{2}} \sqrt{x} \cdot \ln(x) dx!$$

Aufgabe 29

Seien $k, \ell \in \mathbb{R} \setminus \{0\}$ mit $k^2 \neq \ell^2$.

Geben Sie zu den folgenden Funktionen sämtliche Stammfunktionen an!

a)
$$f: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & f(x) := \sin(k \cdot x) \cdot \cos(\ell \cdot x) \end{array} \right\}$$

b) ar sinh

Bemerkung: Beginnen Sie die Integration mit Hilfe von partieller Integration! Zur Ableitung von ar sinh gibt Aufgabe 27 Aufschluss! Es ist $x=\frac{1}{2}\cdot(2\cdot x)$ für alle $x\in\mathbb{R}$.

Aufgabe 30

Berechnen Sie die folgenden reellen Zahlen!

a)
$$\int_{0}^{1} e^{y^{2}} \cdot (4 \cdot y^{3} + 2 \cdot y) dy$$

$$\mathbf{b}) \int_{-\sqrt[3]{\frac{\pi}{6}}}^{0} 9 \cdot k^2 \cdot \left(\cos\left(3 \cdot k^3 + \frac{\pi}{3}\right)\right)^2 dk$$

Zusatzaufgabe (ZA)

Berechnen Sie

Diese Aufgabe bringt Ihnen bis zu vier Zusatzpunkte.

$$\int_{-\frac{1}{2}}^{\frac{3}{2}} \frac{-2 \cdot x^2 + x - 2}{(x^2 - x - 2) \cdot (x^2 + 4)} dx!$$

Bemerkung: Finden Sie hierzu zunächst die Nullstellen x_1 und x_2 des Nenners $(x_1, x_2 \in \mathbb{R})!$ Suchen Sie dann $A, B, C, D \in \mathbb{R}$, so dass für alle $x \in \mathbb{R} \setminus \{x_1, x_2\}$

$$\frac{0 \cdot x^3 - 2 \cdot x^2 + x - 2}{(x^2 - x - 2) \cdot (x^2 + 4)} = \frac{A}{x - x_1} + \frac{B}{x - x_2} + \frac{C \cdot x + D}{x^2 + 4}$$

ist! Hier könnte ein sogenannter Koeffizientenvergleich hilfreich sein. (Koeffizientenvergleich für ein Polynom zweiten Grades: Ist $a \cdot x^2 + b \cdot x + c =$ $\alpha \cdot x^2 + \beta \cdot x + \gamma \text{ für drei verschiedene } x \in \mathbb{R}, \text{ so ist } a = \alpha, b = \beta \text{ und } c = \gamma.)$ $\left\{ \begin{array}{l} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto \frac{1}{1+x^2} \end{array} \right\} \text{ ist die Ableitung des arctan.}$

Partialbruchzerlegung (in \mathbb{R})

(zu Ihrer Information)

Seien $p, q: \mathbb{R} \to \mathbb{R}$ Polynome mit Koeffizienten in \mathbb{R} und $0 \leq \operatorname{grad}(p) < \operatorname{grad}(q)$.

Man betrachtet die Faktorisierung des Polynoms q über \mathbb{R} .

Seien also $a \in \mathbb{R}$, $r, s \in \mathbb{N}_0$, $x_k, y_\ell, z_\ell \in \mathbb{R}$ und $m_k, n_\ell \in \mathbb{N}$ für alle $k, \ell \in \mathbb{N}$ mit $k \leq r$ und $\ell \leq s$ derart, dass $x_{k_1} \neq x_{k_2}$, $(y_{\ell_1} \mid z_{\ell_1}) \neq (y_{\ell_2} \mid z_{\ell_2})$ für alle $k_1, k_2, \ell_1, \ell_2 \in \mathbb{N}$ mit $k_1, k_2 \leq r, \ell_1, \ell_2 \leq s, k_1 \neq k_2$ und $\ell_1 \neq \ell_2$ ist und für alle $x \in \mathbb{R}$ die Darstellung

$$q(x) = a \cdot \prod_{k=1}^{r} (x - x_k)^{m_k} \cdot \prod_{\ell=1}^{s} (x^2 + y_{\ell} \cdot x + z_{\ell})^{n_{\ell}}$$

existiert, wobei $x^2 + y_{\ell} \cdot x + z_{\ell} \neq 0$ für alle $x \in \mathbb{R}$ und alle $\ell \in \mathbb{N}$ mit $\ell \leq s$ ist. Dann ist die obere Darstellung von q gerade die Faktorisierung von q über \mathbb{R} .

Nun werden für alle $k, \ell \in \mathbb{N}$ mit $k \leq r$ und $\ell \leq s$ Konstanten $A_{k,\mu}, B_{\ell,\nu}, C_{\ell,\nu} \in \mathbb{R}$ für alle $\mu, \nu \in \mathbb{N}$ mit $\mu \leq m_k$ und $\nu \leq n_\ell$ gesucht, so dass für alle $x \in \mathbb{R} \setminus \{x_j \in \mathbb{R} : j \in \mathbb{N} \text{ und } j \leq r\}$

$$\frac{p(x)}{q(x)} = \sum_{k=1}^{r} \sum_{\mu=1}^{m_k} \frac{A_{k,\mu}}{(x-x_k)^{\mu}} + \sum_{\ell=1}^{s} \sum_{\nu=1}^{n_{\ell}} \frac{B_{\ell,\nu} \cdot x + C_{\ell,\nu}}{(x^2 + y_{\ell} \cdot x + z_{\ell})^{\nu}}$$

ist. Die rechte Seite der Gleichung heißt dann "Partialbruchzerlegung (in \mathbb{R}) der Funktion $\frac{p}{a}$ ".