Albert-Ludwigs-Universität Freiburg Institut für Mathematik Abteilung für Reine Mathematik

Prof. Dr. D. Wolke Dipl.-Math. S. Feiler

1: Mo 16-18, SR 318	2: Di 11-13, SR 119	3: Di 11-13, SR 125
Christian Marquardt	Jonas Unger	Michael Gutmann
4: Di 11-13, SR 112	5: Di 16-18, SR 119	6: Di 16-18, SR 125
Stefan Fischer	Kai Siebold	Arno Pauly
7: Do 11-13, SR 127	8: Do 16-18, SR 414	9: Fr 11-13, HS II
Sarah Marzi	Bianca Straub	Elisabeth Wursthorn
10: Fr 11-13, SR 414	11: Fr 12-14, SR 218	Fragestunde: Do 09-11
Nicolas Ketterer	Christian Marquardt	Simon Feiler, SR 414

Übungen zur Vorlesung

Mathematik für Ingenieure und Informatiker I

Wintersemester 2007 / 2008

Übungsblatt Nummer 12

28. Januar 2008

Abgabe am Montag, den 04.02.2008 vor der Vorlesung

Bitte die Lösungen mit Name, Matrikelnummer, Übungsnummer und Name des Tutors versehen.

Seien $I \subseteq \mathbb{R}$ ein offenes Intervall, $N \in \mathbb{N}_0$, $f: I \to \mathbb{R}$ eine (mindestens) N + 1-mal auf I stetig differenzierbare Funktion und $a \in I$.

In der Vorlesung wurde gezeigt, dass für alle $x \in I$ die Formel

$$f(x) = \sum_{n=0}^{N} \frac{f^{(n)}(a)}{n!} \cdot (x-a)^{n} + \frac{1}{N!} \cdot \int_{a}^{x} f^{(N+1)}(t) \cdot (x-t)^{N} dt$$

gilt (das ist die Formel zum N-ten Taylorpolynom).

Mithilfe des Mittelwertsatzes der Integralrechnung (Kurzskript zur Vorlesung, Satz 4.1.5) kann man das "Restglied" in einer anderen Weise darstellen.

Es gibt nämlich für alle $x \in I \setminus \{a\}$ ein $\xi \in I$ mit min $\{a,x\} < \xi < \max\{a,x\}$ (das heißt, ξ liegt zwischen a und x) und

$$\int_{a}^{x} f^{(N+1)}(t) \cdot (x-t)^{N} dt = f^{(N+1)}(\xi) \cdot \int_{a}^{x} (x-t)^{N} dt = f^{(N+1)}(\xi) \cdot \left[\frac{-1}{N+1} \cdot (x-t)^{N+1} \right]_{t=a}^{x}$$

$$= \frac{f^{(N+1)}(\xi)}{N+1} \cdot \left(\underbrace{-(x-x)^{N+1}}_{=0} + (x-a)^{N+1} \right).$$

Also gibt es für alle $x \in I \setminus \{a\}$ ein $\xi \in I$ mit min $\{a, x\} < \xi < \max\{a, x\}$ und

$$f(x) = \sum_{n=0}^{N} \frac{f^{(n)}(a)}{n!} \cdot (x-a)^{n} + \frac{f^{(N+1)}(\xi)}{(N+1)!} \cdot (x-a)^{N+1}.$$

Diese Darstellung des Restgliedes wird LAGRANGE'sche Form des Restgliedes genannt.

Aufgabe 34

Berechnen Sie einen Näherungswert für sin $\left(\frac{1}{4}\right)$ mit einem maximalen Fehler von einem Milliardstel!

Finden Sie also ein
$$a \in \mathbb{R}$$
 mit $\left| \sin \left(\frac{1}{4} \right) - a \right| \le 10^{-9}!$

Verwenden Sie hierzu die Taylor-Entwicklung des sin!

Bemerkung: Beim wievielten Glied der Entwicklung dürfen Sie abbrechen? Warum?

Aufgabe 35

- a) Entwickeln Sie sinh und cosh in eine Potenzreihe um 0!
- b) Für welche $x \in \mathbb{R}$ konvergiert die Potenzreihe $\sum_{k=0}^{\infty} k^2 \cdot (x-1)^k$? Für welche $x \in \mathbb{R}$ divergiert die Reihe?
- c) Für welche $x \in \mathbb{R}$ konvergiert die Potenzreihe $\sum_{j=0}^{\infty} j^j \cdot \left(x + \sqrt{2}\right)^j$? Für welche $x \in \mathbb{R}$ divergiert die Reihe?

Aufgabe 36

- a) Stellen Sie die Taylorpolynome $T_5(\cdot,0)$, $T_6(\cdot,0)$ und $T_7(\cdot,0)$ zum Tangens auf! Welcher Vorteil ergibt sich in der Abschätzung von $|\tan(x) T_5(x,0)|$ für $x \in \left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$? Bemerkung: Eventuell hilft es, zunächst für alle $n \in \mathbb{N}$ die Ableitung der n-ten Potenz des Tangens' in der Tangens-Darstellung zu ermitteln.
- b) Entwickeln Sie arctan in eine Taylorreihe um 0! Wie groß ist der Konvergenzradius dieser Reihe? Bemerkung: Kennen Sie die Reihendarstellung der Ableitung des arctan?