Albert-Ludwigs-Universität Freiburg Mathematisches Institut Abteilung für Reine Mathematik

Prof. Dr. D. Wolke Dipl.-Math. S. Feiler

II: Di, 11-13 Uhr, SR 218
Katja Reiser, Math. Inst.
IV: Di, 16-18 Uhr, SR 00-014
Jonas Unger, Gebäude 078
Fragestunde: Do, ab 11 Uhr
Simon Feiler, Hörsaal II

Übungen zur Vorlesung

Mathematik für Studierende des Ingenieurwesens II

Sommersemester 2008

Übungsblatt Nummer 15

29. April 2008

Abgabe am Dienstag, den 06.05.2008 vor der Vorlesung Bitte die Lösungen mit Name, Matrikelnummer, Übungsnummer und Name des Tutors versehen.

Aufgabe 43

Seien
$$\mathcal{A} := \begin{pmatrix} \frac{1}{2} & -\frac{3}{4} \\ \frac{1}{14} & \frac{1}{7} \end{pmatrix} \in \mathbb{R}^{2 \times 2}, \ \mathcal{B} := \begin{pmatrix} 3 & -2 & 1 \\ -2 & 3 & 6 \\ -1 & 1 & -5 \end{pmatrix} \in \mathbb{R}^{3 \times 3} \text{ und } \mathcal{C} := \begin{pmatrix} 2 & 4 & 3 \\ 2 & 1 & 6 \\ 2 & 8 & -2 \end{pmatrix} \in \mathbb{R}^{3 \times 3}.$$

- a) Stellen Sie fest, ob \mathcal{A} invertierbar ist! Geben Sie im Falle der Invertierbarkeit die Inverse \mathcal{A}^{-1} an!
- b) Stellen Sie fest, ob \mathcal{B} invertierbar ist! Geben Sie im Falle der Invertierbarkeit die Inverse \mathcal{B}^{-1} an!
- c) Stellen Sie fest, ob C invertierbar ist! Geben Sie im Falle der Invertierbarkeit die Inverse C^{-1} an!
- d) Stellen Sie fest, ob $C \cdot B$ invertierbar ist! Geben Sie im Falle der Invertierbarkeit die Inverse $(C \cdot B)^{-1}$ an!

Bemerkung: Bei der Berechnung einer Inversen empfiehlt sich stets eine Überprüfung des Ergebnisses. Hierzu multipliziere man die Ursprungsmatrix mit ihrer Inversen.

PROJEKTION UND ORTHOGONALER ANTEIL (in den Fällen $V=\mathbb{R}^3$ und $V=\mathbb{R}^2$ ist das eine Wiederholung)

Es seien $K \in \{\mathbb{R}; \mathbb{C}\}$, V ein K-Vektorraum, $*: \left\{ \begin{array}{ccc} V \times V & \to & K \\ (\vec{x}; \vec{y})^T & \mapsto & \vec{x} * \vec{y} \end{array} \right\}$ ein Skalarprodukt auf

 $V \text{ und } \|\cdot\|: \left\{ \begin{array}{ccc} V & \to & \mathbb{R} \\ \vec{x} & \mapsto & \|\vec{x}\|:=\sqrt{\vec{x}*\vec{x}} \end{array} \right\} \text{ die ,vom Skalarprodukt } * \text{ induzierte Norm" auf } V.$

Hat man zwei Vektoren $\vec{a} \in V \setminus \left\{ \vec{0} \right\}$ und $\vec{b} \in V$ gegeben, so kann man die "Projektion $\vec{b}_{\parallel \vec{a}}$ von \vec{b} in Richtung \vec{a} bezüglich *" berechnen. Es gilt

$$\vec{b}_{\parallel \vec{a}} = \frac{\vec{a} * \vec{b}}{\vec{a} * \vec{a}} \cdot \vec{a} = \frac{\vec{a} * \vec{b}}{\parallel \vec{a} \parallel^2} \cdot \vec{a}.$$

Den "zu \vec{a} bezüglich * orthogonalen Anteil $\vec{b}_{\perp \vec{a}}$ von \vec{b} " erhält man nun mit der Formel

$$\vec{b}_{\perp \vec{a}} = \vec{b} - \vec{b}_{\parallel \vec{a}}.$$

Zwei Vektoren $\vec{x} \in V$ und $\vec{y} \in V$ sind "orthogonal bezüglich *" (d.h. stehen bezüglich * senkrecht aufeinander), wenn $\vec{x} * \vec{y} = 0$ ist.

Sei $\vec{p} := \begin{pmatrix} 1 \\ -2 \\ 2 \\ 1 \end{pmatrix} \in \mathbb{R}^4$. Finden Sie eine Orthogonalbasis des \mathbb{R}^4 bezüglich des Standard-Skalarprodukts, in der \vec{p} einen Basisvektor darstellt!

Bemerkung: Eine Orthogonalbasis ist eine Basis, in der alle Vektoren orthogonal sind.

Suchen Sie zunächst einen zu \vec{p} orthogonalen Vektor \vec{q} !

Suchen Sie nun einen von \vec{p} und \vec{q} linear unabhängigen Vektor \vec{u} und berechnen Sie $\vec{r}:=(\vec{u}_{\perp\vec{p}})_{\perp\vec{q}}!$ Zuguterletzt suchen Sie einen von $\vec{p},$ \vec{q} und \vec{r} linear unabhängigen Vektor \vec{v} . Be-

rechnen Sie $\vec{s} := \left((\vec{v}_{\perp \vec{p}})_{\perp \vec{q}} \right)_{\perp \vec{r}}!$ Mit etwas Geschick können \vec{q} , \vec{u} und \vec{v} so gewählt werden, dass sich einigermaßen

"schöne" Zahlen ergeben.

Was würde passieren, wenn \vec{u} linear abhängig von \vec{p} und \vec{q} gewählt würde?

Aufgabe 45

$$\mathcal{M} := \begin{pmatrix} 6 & 8 & 3 & 10 \\ -1 & 3 & 2 & 2 \\ 4 & -2 & 1 & -6 \\ 5 & 7 & 1 & 12 \\ -3 & 1 & -2 & 6 \end{pmatrix} \in \mathbb{R}^{5 \times 4} \qquad \mathcal{N} := \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 7 & 8 & 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & -1 & -2 & -3 \\ -4 & -5 & -6 & -7 & -8 & -9 \\ -10 & -11 & -12 & -13 & -14 & -15 \end{pmatrix} \in \mathbb{R}^{5 \times 6}$$

- a) Bestimmen Sie den Zeilenrang von \mathcal{M} und den Spaltenrang von \mathcal{M} !
- b) Bestimmen Sie den Zeilenrang von \mathcal{N} und den Spaltenrang von $\mathcal{N}!$