Albert-Ludwigs-Universität Freiburg Mathematisches Institut

Abteilung für Reine Mathematik

Prof. Dr. D. Wolke Dipl.-Math. S. Feiler

I: Mo, 14-16 Uhr, SR 414	II: Di, 11-13 Uhr, SR 218
Nicolas Ketterer, Math. Inst.	Katja Reiser, Math. Inst.
III: Di, 16-18 Uhr, SR 01-009/13	IV: Di, 16-18 Uhr, SR 00-014
Julia Riegger, Gebäude 101	Jonas Unger, Gebäude 078
V: Mi, 14-16 Uhr, SR 00-010/14	Fragestunde: Do, 16-18 Uhr
Elisabeth Wursthorn, Geb. 101	Simon Feiler, SR 00-014 (078)

Übungen zur Vorlesung

Mathematik für Studierende des Ingenieurwesens II

Sommersemester 2008

Übungsblatt Nummer 22

24. Juni 2008

Abgabe am Dienstag, den 31.06.2008 vor der Vorlesung

Bitte die Lösungen mit Name, Matrikelnummer, Übungsnummer und Name des Tutors versehen.

Aufgabe 64

Sei H die rechts dargestellte Teilmenge des \mathbb{R}^2 .

Zeigen Sie, dass es zwei Normalbereiche in x-Richtung $H_{1,x}\subseteq \mathbb{R}^2$ und $H_{2,x}\subseteq \mathbb{R}^2$ mit $H=H_{1,x}\cup H_{2,x}$ gibt!

Zeigen Sie, dass es drei Normalbereiche in y-Richtung $H_{1,y}\subseteq \mathbb{R}^2$, $H_{2,y}\subseteq \mathbb{R}^2$ und $H_{3,y}\subseteq \mathbb{R}^3$ mit $H=H_{1,y}\cup H_{2,y}\cup H_{3,y}$ gibt!

Bestimmen Sie rechnerisch den Schwerpunkt von H!

Bemerkung: Bei der Berechnung der x-Koordinate des Schwerpunktes empfiehlt sich in einem Integral die Substitution "u = -x"!

H selbst ist ein Normalbereich in x-Richtung, jedoch kein Normalbereich in y-Richtung.

Die Berechnung von $\int_{H} 1 d(x, y)$ dürfen Sie geometrisch begründen.

Aufgabe 65

Sei K die rechts dargestellte Teilmenge des \mathbb{R}^2 .

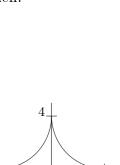
Die Begrenzungslinien sind gestauchte Normalparabeln, die ihren Scheitelpunkt auf der x-Achse haben.

Zeigen Sie, dass es zwei in x-Richtung projezierbare Mengen $K_{1,x} \subseteq \mathbb{R}^2$ und $K_{2,x} \subseteq \mathbb{R}^2$ mit $K = K_{1,x} \cup K_{2,x}$ gibt!

Zeigen Sie, dass es zwei in y-Richtung projezierbare Mengen $K_{1,y} \subseteq \mathbb{R}^2$ und $K_{2,y} \subseteq \mathbb{R}^2$ mit $K = K_{1,y} \cup K_{2,y}$ gibt!

Bestimmen Sie
$$\int_{K} (x+y+4) d(x,y)!$$

Bemerkung: K selbst ist auch in x- und in y-Richtung projezierbar.



bitte wenden

Aufgabe 66

Seien $h \in \mathbb{R}$ mit h > 0, $R \in \mathbb{R}$ mit R > 0 und

$$K := \left\{ (x, y, z) \in \mathbb{R}^3 \middle| 0 \le z \le h \text{ und } x^2 + y^2 \le \frac{z^2 \cdot R^2}{h^2} \right\}.$$

Bestimmen Sie rechnerisch den Schwerpunkt des auf der Spitze stehenden Kegels K der Höhe h und des Radius' R!

Bemerkung: Verwenden Sie Zylinderkoordinaten!