Dr. W. Schuster

Übungen zur Vorlesung

Mathematik für Naturwissenschaftler I — WS 2005/06Blatt 5

Aufgabe 1.

Zeigen Sie, daß die Abbildung $z: \mathbb{R} \to \mathbb{C}$, die jedem $t \in \mathbb{R}$ die komplexe Zahl $z(t) = \frac{t+i}{t-i}$ zuordnet, die reelle Achse \mathbb{R} injektiv auf den Einheitskreis \mathbb{E} der komplexen Ebene abbildet. Bestimmen Sie die Punkte z(0), z(1), z(-1). Was geschieht mit z, wenn t gegen $+\infty$ oder $-\infty$ geht? (5 Punkte)

Aufgabe 2.

Beweisen Sie mit Hilfe der komplexen Zahlen den Satz des Thales: Liegt der Punkt C auf dem Halbkreis über AB, dann hat das Dreieck ABC bei C einen rechten Winkel.

(4 Punkte)

Aufgabe 3.

Schreiben Sie die komplexen Zahlen $a=-1+i,\ b=\sqrt{3}-i$ und $c=\sqrt{1+i}$ jeweils in der Polarform $z=r\,e^{it}$. (6 Punkte)

Aufgabe 4.

Zerlegen Sie das Polynom $p(z) = z^2 - (3+i)z + 4 + 3i$ in seine Linearfaktoren.

(3 Punkte)