Albert-Ludwigs-Universität Freiburg Institut für Mathematik Abteilung für Reine Mathematik

Prof. Dr. D. Wolke Dipl.—Math. S. Feiler Übungen zur Vorlesung

Ergänzungen zur Elementaren Zahlentheorie

Wintersemester 2009/2010

2. Übungsblatt

28. Oktober 2009

Aufgabe 49 (Klausuraufgabe 6 aus der elementaren Zahlentheorie)

- a) Stellen Sie die zweite Ableitung von ζ auf $\mathbb H$ als DIRICHLET-Reihe dar!
- b) Finden Sie eine Darstellung der zweiten logarithmischen Ableitung von ζ als DIRICHLET-Reihe auf \mathbb{H} !
- c) Zeigen Sie mit Hilfe von Aufgabe 47

$$\Lambda \cdot \ln + \Lambda * \Lambda = \mu * \ln^2$$
!

Aufgabe 50 (Nicht jede holomorphe Funktion kann als DIRICHLET-Reihe geschrieben werden) Geben Sie ein $\sigma_0 \in \mathbb{R} \cup \{-\infty\}$ und eine Funktion an, die für kein $\sigma \in \mathbb{R} \cup \{-\infty\}$ in der Halbebene $\{s \in \mathbb{C} | \operatorname{Re}(s) > \sigma\}$ als DIRICHLET-Reihe geschrieben werden kann, jedoch auf $\{s \in \mathbb{C} | \operatorname{Re}(s) > \sigma_0\}$ holomorph ist.

Aufgabe 51 (ζ -Identitäten)

a) Zeigen Sie
$$\frac{\zeta(s)}{\zeta(2s)} = \sum_{n=1}^{\infty} \frac{\mu^2(n)}{n^s}$$
 für alle $s \in \mathbb{H}$!

b) Zeigen Sie
$$\frac{\zeta^2(s)}{\zeta(2s)} = \sum_{n=1}^{\infty} \frac{2^{\#\{p \in \mathbb{P}|p|n\}}}{n^s}$$
 für alle $s \in \mathbb{H}$!

c) Zeigen Sie
$$\frac{\zeta^3(s)}{\zeta(2s)} = \sum_{n=1}^{\infty} \frac{\#\{d \in \mathbb{N} | d | n^2 \}}{n^s}$$
 für alle $s \in \mathbb{H}$