Albert-Ludwigs-Universität Freiburg Institut für Mathematik Abteilung für Reine Mathematik

Prof. Dr. D. Wolke Dipl.—Math. S. Feiler Übungen zur Vorlesung

Ergänzungen zur Elementaren Zahlentheorie

Wintersemester 2009/2010

5. Übungsblatt — Musterlösung 18. November 2009

Aufgabe 58 (Satz von LANDAU)

Sei $a: \left\{\begin{array}{ccc} \mathbb{N} & \to & \mathbb{R} \\ n & \mapsto & a_n \end{array}\right\}$ mit $a_n \geq 0$ für alle $n \in \mathbb{N}$ derart, dass es ein $\sigma_0 \in \mathbb{R}$ gibt, so dass

 $\sum_{n=1}^{\infty} \frac{a_n}{n^s} \text{ für alle } s \in \mathbb{C} \text{ mit } \operatorname{Re}(s) > \sigma_0 \text{ konvergiert und für alle } s \in \mathbb{C} \text{ mit } \operatorname{Re}(s) < \sigma_0 \text{ divergiert.}$

Sei $\mathcal{D} \subseteq \mathbb{C}$ maximal derart, dass $f: \left\{ \begin{array}{ccc} \mathcal{D} & \to & \mathbb{C} \\ s & \mapsto & f(s) \end{array} \right\}$ holomorph auf \mathcal{D} mit $\sum_{n=1}^{\infty} \frac{a_n}{n^s}$ für alle

 $s \in \mathcal{D}$ mit $\operatorname{Re}(s) > \sigma_0$ ist.

Zeigen Sie, dass $\sigma_0 \notin \mathcal{D}$ ist!

Tipp: Entwickeln Sie f unter der Annahme $\sigma_0 \in \mathcal{D}$ in eine Potenzreihe um $\sigma_0 + 1$ und zeigen Sie unter Beachtung deren Konvergenzradius', dass die DIRICHLET-Reihe dann auch an einigen Stellen in der Halbebene $\{s \in \mathbb{C} | \operatorname{Re}(s) < \sigma_0\}$ konvergiert!

Lösung:

Annahme: $\sigma_0 \in \mathcal{D}$

 \mathcal{D} ist als Gebiet offen. Deshalb gibt es ein $\delta_0 \in \mathbb{R}^+$, so dass $\{s \in \mathbb{C} | |s - \sigma_0| < \delta_0\} \subseteq \mathcal{D}$ ist.

Da $\sum_{n=1}^{\infty} \frac{a_n}{n^s}$ für alle $s \in \mathbb{C}$ mit $\operatorname{Re}(s) > \sigma_0$ konvergiert, folgt

$$\mathcal{D} \supseteq \{ s \in \mathbb{C} | \operatorname{Re}(s) > \sigma_0 \text{ oder } |s - \sigma_0| < \delta_0 \}.$$

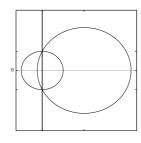
Außerdem ist f in einer Umgebung von $\sigma_0 + 1$ holomorph und kann dort in eine Potenzreihe entwickelt werden.

Es gibt also ein (maximal gewähltes) $r \in \mathbb{R}^+ \cup \{\infty\}$, so dass für alle $s \in \mathbb{C}$ mit $|\sigma_0 + 1 - s| < r$

$$f(s) = \sum_{\ell=0}^{\infty} \frac{f^{(\ell)}(\sigma_0 + 1)}{\ell!} \cdot (s - \sigma_0 - 1)^{\ell}$$

gilt.

Zur Bestimmung des Konvergenzradius' r lässt sich sagen, dass die Punkte, die am nächsten zu $\sigma_0 + 1$ und nicht sicher in \mathcal{D} liegen, die Punkte $\sigma_0 + \mathrm{i}\delta_0$ und $\sigma_0 - \mathrm{i}\delta_0$ sind.



Also ist f auf $\left\{s\in\mathbb{C}|\,|s-\sigma_0-1|<\sqrt{1+\delta_0^2}\right\}$ sicher holomorph und mit

$$\delta := -1 + \sqrt{1 + \delta_0^2}$$
 folgt $\delta \in \mathbb{R}^+$ und $r \ge 1 + \delta$.

Ferner gilt für alle $\ell \in \mathbb{N}_0$

$$f^{(\ell)}(\sigma_0 + 1) = \sum_{n=1}^{\infty} \frac{(-\ln(n))^{\ell} \cdot a_n}{n^{\sigma_0 + 1}} = (-1)^{\ell} \cdot \sum_{n=1}^{\infty} \frac{\ln^{\ell}(n) \cdot a_n}{n^{\sigma_0 + 1}}.$$

Damit folgt für alle $s \in \mathbb{C}$ mit $|s - \sigma_0 - 1| < 1 + \delta$

$$f(s) = \sum_{\ell=0}^{\infty} \frac{(\sigma_0 + 1 - s)^{\ell}}{\ell!} \cdot \sum_{n=1}^{\infty} \frac{\ln^{\ell}(n) \cdot a_n}{n^{\sigma_0 + 1}}.$$

In dieser Doppelsumme sind alle Terme positiv (oder verschwindend), falls $s \in \mathbb{R}$ mit $\sigma_0 - \delta < s \le \sigma_0 + 1$ vorausgesetzt wird. Insbesondere ist die Doppelsumme absolut konvergent und es darf beliebig umgeordnet werden.

Damit folgt für alle $s \in (\sigma_0 - \delta; \sigma_0 + 1]$

$$f(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^{\sigma_0+1}} \cdot \sum_{\ell=0}^{\infty} \frac{(\ln(n) \cdot (\sigma_0 + 1 - s))^{\ell}}{\ell!} = \sum_{n=1}^{\infty} \frac{a_n}{n^{\sigma_0+1}} \cdot e^{\ln(n) \cdot (\sigma_0 + 1 - s)} = \sum_{n=1}^{\infty} \frac{a_n}{n^s}.$$

Also konvergiert $\sum_{n=1}^{\infty} \frac{a_n}{n^s}$ für alle $s \in (\sigma_0 - \delta; \sigma_0 + 1]$ und insbesondere zum Beispiel für

$$z := \sigma_0 - \frac{\delta}{2} < \sigma_0.$$

Dies ist ein Widerspruch zur Voraussetzung, dass $\sum_{n=1}^{\infty} \frac{a_n}{n^z}$ wegen $\text{Re}(z) < \sigma_0$ divergiert.

Aufgabe 59 (Potenzreihen)

a) Zeigen Sie für alle $z \in \mathbb{C}$ mit |z| < 1

$$\sum_{\ell=0}^{\infty} (\ell+1)^2 \cdot z^{\ell} = \frac{1+z}{(1-z)^3} !$$

b) Zeigen Sie für alle $z \in \mathbb{C}$ mit |z| < 1

$$\sum_{\ell=0}^{\infty} (\ell+1) \cdot z^{\ell} = \frac{1}{(1-z)^2} !$$

Lösung:

a) Für alle $z \in \mathbb{C}$ und alle $N \in \mathbb{N}$ gilt

$$(1-z)^{3} \cdot \sum_{\ell=0}^{N} (\ell+1)^{2} \cdot z^{\ell}$$

$$= \sum_{\ell=0}^{N} (\ell+1)^{2} \cdot z^{\ell} - 3 \cdot \sum_{\ell=0}^{N} (\ell+1)^{2} \cdot z^{\ell+1} + 3 \cdot \sum_{\ell=0}^{N} (\ell+1)^{2} \cdot z^{\ell+2} - \sum_{\ell=0}^{N} (\ell+1)^{2} \cdot z^{\ell+3}$$

$$= 1 + (4-3) \cdot z + (9-12+3) \cdot z^{2} + \sum_{\ell=3}^{N} ((\ell+1)^{2} - 3\ell^{2} + 3 \cdot (\ell-1)^{2} - (\ell-2)^{2}) \cdot z^{\ell}$$

$$+ ((-3 \cdot (N+1)^{2} + 3N^{2} - (N-1)^{2}) + (3 \cdot (N+1)^{2} - N^{2}) \cdot z - (N+1)^{2} \cdot z^{2}) \cdot z^{N+1}$$

Für alle $x \in \mathbb{C}$ sind

$$(x+1)^2 - 3x^2 + 3 \cdot (x-1)^2 - (x-2)^2$$

= $x^2 + 2x + 1 - 3x^2 + 3x^2 - 6x + 3 - x^2 + 4x - 4 = 0$

und

$$-3 \cdot (x+1)^2 + 3x^2 - (x-1)^2$$

= -3x^2 - 6x - 3 + 3x^2 - x^2 + 2x - 1 = -x^2 - 4x - 4 = -(x+2)^2.

Für alle $z \in \mathbb{C}$ und alle $N \in \mathbb{N}$ folgt

$$(1-z)^3 \cdot \sum_{\ell=0}^{N} (\ell+1)^2 \cdot z^{\ell}$$
$$= 1 + z - (N+2)^2 \cdot z^{N+1} + (2N^2 + 6N + 3) \cdot z^{N+2} - (N+1)^2 \cdot z^{N+3}.$$

Ist $z \in \mathbb{C}$ mit |z| < 1, so gehen die letzten drei Summanden für $N \to \infty$ gegen 0 und damit folgt die Behauptung.

b) Für alle $z \in \mathbb{C}$ mit |z| < 1 ist $\sum_{\ell=1}^{\infty} z^{\ell}$ absolut konvergent gegen $\frac{1}{1-z} - 1 = \frac{z}{1-z}$.

Insbe
ondere darf gliedweise differenziert werden, so dass für alle $z \in \mathbb{C}$ mi
t|z| < 1 folgt

$$\frac{1}{(1-z)^2} = \frac{1 \cdot (1-z) - z \cdot (-1)}{(1-z)^2} = \frac{d}{dz} \frac{z}{1-z}$$
$$= \frac{d}{dz} \sum_{\ell=1}^{\infty} z^{\ell} = \sum_{\ell=1}^{\infty} \frac{d}{dz} z^{\ell} = \sum_{\ell=1}^{\infty} \ell \cdot z^{\ell-1} = \sum_{\ell=0}^{\infty} (\ell+1) \cdot z^{\ell}.$$

Aufgabe 60 (Verallgemeinerung einer Formel von RAMANUJAN nach INGHAM (1930))

Für alle $a: \left\{ \begin{array}{ccc} \mathbb{N} & \to & \mathbb{C} \\ n & \mapsto & a_n \end{array} \right\}$ mit $\delta_a:=\sup_{\substack{n\in\mathbb{N}\\a_n\neq 0}}\frac{\ln\left(|a_n|\right)}{\ln\left(n\right)}\in\mathbb{R}$ und alle $s\in\mathbb{C}$ mit $\operatorname{Re}\left(s\right)>1+\delta_a$

ist $\sum_{n=1}^{\infty} \frac{a_n}{n^s}$ absolut konvergent. Für alle $a: \left\{ \begin{array}{ccc} \mathbb{N} & \to & \mathbb{C} \\ n & \mapsto & a_n \end{array} \right\}$ mit $\delta_a \in \mathbb{R}$ sei

$$D_a: \left\{ \begin{array}{ccc} \left\{ z \in \mathbb{C} \middle| \operatorname{Re}(z) > \delta_a \right\} & \to & \mathbb{C} \\ s & \mapsto & D_a(s) := \sum_{n=1}^{\infty} \frac{a_n}{n^s} \end{array} \right\}.$$

a) Zeigen Sie für alle vollständig multiplikativen $a: \left\{ \begin{array}{c} \mathbb{N} \to \mathbb{C} \\ n \mapsto a_n \end{array} \right\}$ mit $\delta_a \in \mathbb{R}$ und alle vollständig multiplikativen $b: \left\{ \begin{array}{c} \mathbb{N} \to \mathbb{C} \\ n \mapsto b_n \end{array} \right\}$ mit $\delta_b \in \mathbb{R}$ sowie alle $s \in \mathbb{C}$ mit $\operatorname{Re}(s) > \max\{1; 1 + \delta_a; 1 + \delta_b; 1 + \delta_{ab}; 1 + \delta_a + \delta_b\}$

$$\sum_{n=1}^{\infty} \frac{\left(a * \mathbb{1}\right)\left(n\right) \cdot \left(b * \mathbb{1}\right)\left(n\right)}{n^{s}} = \frac{\zeta\left(s\right) \cdot D_{a}\left(s\right) \cdot D_{b}\left(s\right) \cdot D_{ab}\left(s\right)}{D_{ab}\left(2s\right)} \quad !$$

Tipp: Betrachten Sie die Faktoren des EULER-Produkts der linken Seite und untersuchen Sie Primzahlen $p \in \mathbb{P}$ mit $a_p = 1$ oder $b_p = 1$ gesondert!

Bemerkung: Die linke Seite konvergiert für alle $s \in \mathbb{C}$ mit $\operatorname{Re}(s) > 1 + \delta_a + \delta_b$ absolut, da die Zählerfunktion durch das Quadrat der Teileranzahlfunktion τ multipliziert mit der Potenz id $^{\delta_a + \delta_b}$ abgeschätzt werden kann.

b) Sei
$$\sigma_k$$
: $\left\{ \begin{array}{ccc} \mathbb{N} & \to & \mathbb{C} \\ n & \mapsto & \sigma_k\left(n\right) := \sum_{d|n} d^k \end{array} \right\}$ für alle $k \in \mathbb{C}$.

Zeigen Sie für alle $w \in \mathbb{C}$ und alle $z \in \mathbb{C}$ die für alle $s \in \mathbb{C}$ mit

$$\operatorname{Re}(s) > \max\{1; 1 + \operatorname{Re}(w); 1 + \operatorname{Re}(z); 1 + \operatorname{Re}(w) + \operatorname{Re}(z)\}\$$

gültige RAMANUJAN-Formel

$$\frac{\zeta(s) \cdot \zeta(s-w) \cdot \zeta(s-z) \cdot \zeta(s-w-z)}{\zeta(2s-w-z)} = \sum_{n=1}^{\infty} \frac{\sigma_w(n) \cdot \sigma_z(n)}{n^s} !$$

Lösung:

a) Für alle vollständig multiplikativen $a: \left\{ \begin{array}{ccc} \mathbb{N} & \to & \mathbb{C} \\ n & \mapsto & a_n \end{array} \right\}$ mit $\delta_a \in \mathbb{R}$ und alle $s \in \mathbb{C}$ mit $\operatorname{Re}(s) > 1 + \delta_a$ gelten

$$\left|\frac{a_p}{p^s}\right| = \frac{|a_p|}{p^{\text{Re}(s)}} \begin{cases} = 0, & \text{falls } a_p = 0 \text{ ist;} \\ < \frac{|a_p|}{p^{1+\delta_a}} < \frac{|a_p|}{p^{\frac{\ln(|a_p|)}{\ln(p)}}} = 1, & \text{falls } a_p \neq 0 \text{ ist,} \end{cases} \quad \text{also} \quad \left|\frac{a_p}{p^s}\right| < 1$$

für alle $p \in \mathbb{P}$ und nach dem EULER'schen Produktsatz

$$D_a(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s} = \prod_{p \in \mathbb{P}} \sum_{\ell=0}^{\infty} \frac{a_{p^{\ell}}}{(p^s)^{\ell}} = \prod_{p \in \mathbb{P}} \sum_{\ell=0}^{\infty} \left(\frac{a_p}{p^s}\right)^{\ell} = \prod_{p \in \mathbb{P}} \sum_{\ell=0}^{\infty} \frac{1}{1 - \frac{a_p}{p^s}}.$$

Seien $a: \left\{ \begin{array}{l} \mathbb{N} \to \mathbb{C} \\ n \mapsto a_n \end{array} \right\}$ und $b: \left\{ \begin{array}{l} \mathbb{N} \to \mathbb{C} \\ n \mapsto b_n \end{array} \right\}$ vollständig multiplikativ mit $\delta_a \in \mathbb{R}$ und $\delta_b \in \mathbb{R}$. Sei $s \in \mathbb{C}$ mit $\operatorname{Re}(s) > \max \left\{ 1; 1 + \delta_a; 1 + \delta_b; 1 + \delta_a; 1 + \delta_a + \delta_b \right\}$.

Mit dem Euler'schen Produktsatz folgt

$$\sum_{n=1}^{\infty} \frac{(a * 1) (n) \cdot (b * 1) (n)}{n^{s}} = \prod_{p \in \mathbb{P}} \sum_{\ell=0}^{\infty} \frac{(a * 1) (p^{\ell}) \cdot (b * 1) (p^{\ell})}{(p^{s})^{\ell}} = \prod_{p \in \mathbb{P}} \sum_{\ell=0}^{\infty} \sum_{d \mid p^{\ell}} a_{d} \cdot \sum_{c \mid p^{\ell}} b_{c} \cdot \frac{1}{p^{\ell s}}$$
$$= \prod_{p \in \mathbb{P}} \sum_{\ell=0}^{\infty} \sum_{j=0}^{\ell} a_{p^{j}} \cdot \sum_{k=1}^{\ell} b_{p^{k}} \cdot \frac{1}{p^{\ell s}} = \prod_{p \in \mathbb{P}} \sum_{\ell=0}^{\infty} \sum_{j=0}^{\ell} a_{p^{j}}^{j} \cdot \sum_{k=0}^{\ell} b_{p^{k}}^{k} \cdot \frac{1}{p^{\ell s}}.$$

Für alle $p \in \mathbb{P}$ mit $a_p \neq 1$ und $b_p \neq 1$ ist

$$\begin{split} \sum_{\ell=0}^{\infty} \sum_{j=0}^{\ell} a_{p}^{j} \cdot \sum_{k=0}^{\ell} b_{p}^{k} \cdot \frac{1}{p^{\ell s}} &= \sum_{\ell=0}^{\infty} \frac{1 - a_{p}^{\ell+1}}{1 - a_{p}} \cdot \frac{1 - b_{p}^{\ell+1}}{1 - b_{p}} \cdot \frac{1}{p^{\ell s}} \\ &= \frac{\sum_{\ell=0}^{\infty} \left(\frac{1}{p^{s}}\right)^{\ell} - a_{p} \cdot \sum_{\ell=0}^{\infty} \left(\frac{a_{p}}{p^{s}}\right)^{\ell} - b_{p} \cdot \sum_{\ell=0}^{\infty} \left(\frac{b_{p}}{p^{s}}\right)^{\ell} + a_{p}b_{p} \cdot \sum_{\ell=0}^{\infty} \left(\frac{a_{p}b_{p}}{p^{s}}\right)^{\ell}}{(1 - a_{p}) \cdot (1 - b_{p})} \\ &= \frac{1}{(1 - a_{p}) \cdot (1 - b_{p})} \cdot \left(\frac{1}{1 - \frac{1}{p^{s}}} - \frac{a_{p}}{1 - \frac{a_{p}}{p^{s}}} - \frac{b_{p}}{1 - \frac{b_{p}}{p^{s}}} + \frac{a_{p}b_{p}}{1 - \frac{a_{p}b_{p}}{p^{s}}}\right) \\ &= \frac{1}{(1 - a_{p}) \cdot (1 - b_{p})} \cdot \left(\frac{\left(1 - \frac{a_{p}}{p^{s}}\right) - a_{p} \cdot \left(1 - \frac{1}{p^{s}}\right)}{\left(1 - \frac{1}{p^{s}}\right) \cdot \left(1 - \frac{a_{p}b_{p}}{p^{s}}\right)} - \frac{b_{p} \cdot \left(1 - \frac{a_{p}b_{p}}{p^{s}}\right) - a_{p}b_{p} \cdot \left(1 - \frac{b_{p}}{p^{s}}\right)}{\left(1 - \frac{1}{p^{s}}\right) \cdot \left(1 - \frac{a_{p}b_{p}}{p^{s}}\right)} - b_{p} \cdot \left(1 - \frac{1}{p^{s}}\right) \cdot \left(1 - \frac{a_{p}b_{p}}{p^{s}}\right) \\ &= \frac{1}{1 - b_{p}} \cdot \frac{\left(1 - \frac{b_{p}}{p^{s}}\right) \cdot \left(1 - \frac{a_{p}b_{p}}{p^{s}}\right) \cdot \left(1 - \frac{b_{p}}{p^{s}}\right) \cdot \left(1 - \frac{a_{p}b_{p}}{p^{s}}\right)}{\left(1 - \frac{1}{p^{s}}\right) \cdot \left(1 - \frac{a_{p}}{p^{s}}\right) \cdot \left(1 - \frac{a_{p}b_{p}}{p^{s}}\right)} \\ &= \frac{1 - \frac{b_{p}}{1 - b_{p}} \cdot \frac{a_{p}b_{p}}{p^{s}} + b_{p} \cdot \frac{a_{p}b_{p}}{p^{s}} - b_{p} + \frac{b_{p}}{p^{s}} + \frac{a_{p}b_{p}}{p^{s}} - \frac{a_{p}b_{p}}{p^{s}}}}{\left(1 - \frac{1}{p^{s}}\right) \cdot \left(1 - \frac{a_{p}}{p^{s}}\right) \cdot \left(1 - \frac{a_{p}b_{p}}{p^{s}}\right)} \\ &= \frac{1 - \frac{a_{p}b_{p}}{1 - b_{p}} \cdot \left(1 - \frac{a_{p}}{p^{s}}\right) \cdot \left(1 - \frac{b_{p}}{p^{s}}\right) \cdot \left(1 - \frac{a_{p}b_{p}}{p^{s}}\right)}{\left(1 - \frac{1}{p^{s}}\right) \cdot \left(1 - \frac{a_{p}b_{p}}{p^{s}}\right) \cdot \left(1 - \frac{a_{p}b_{p}}{p^{s}}\right)}} \\ &= \frac{1 - \frac{a_{p}b_{p}}{1 - b_{p}} \cdot \left(1 - \frac{a_{p}b_{p}}{p^{s}}\right) \cdot \left(1 - \frac{a_{p}b_{p}}{p^{s}}\right)}{\left(1 - \frac{1}{p^{s}}\right) \cdot \left(1 - \frac{a_{p}b_{p}}{p^{s}}\right)} \cdot \left(1 - \frac{a_{p}b_{p}}{p^{s}}\right)}} \\ &= \frac{1 - \frac{a_{p}b_{p}}{1 - b_{p}} \cdot \left(1 - \frac{a_{p}b_{p}}{p^{s}}\right) \cdot \left(1 - \frac{a_{p}b_{p}}{p^{s}}\right)}{\left(1 - \frac{1}{p^{s}}\right) \cdot \left(1 - \frac{a_{p}b_{p}}{p^{s}}\right)}} \\ &= \frac{1 - \frac{a_{p}b_{p}}{1 - b_{p}} \cdot \left(1 - \frac{a_{p}b_{p}}{p^{s}}\right) \cdot \left(1 - \frac{a_{p}b_{p}}{p^{s}}\right)}{\left(1 - \frac{a_{p}b_{p}}{p^{s}}\right) \cdot \left(1 - \frac{a_{p}b_{p}}{p^$$

Für alle $p \in \mathbb{P}$ mit $a_p = 1 = b_p$ ist nach Aufgabe 59 a) wegen $\left| \frac{1}{p^s} \right| = \frac{1}{p^{\text{Re}(s)}} < \frac{1}{p} < 1$

$$\sum_{\ell=0}^{\infty} \sum_{j=0}^{\ell} a_p^j \cdot \sum_{k=0}^{\ell} b_p^k \cdot \frac{1}{p^{\ell s}} = \sum_{\ell=0}^{\infty} \left(\sum_{j=0}^{\ell} 1\right)^2 \cdot \frac{1}{p^{\ell s}} = \sum_{\ell=0}^{\infty} (\ell+1)^2 \cdot \left(\frac{1}{p^s}\right)^{\ell} = \frac{1 + \frac{1}{p^s}}{\left(1 - \frac{1}{p^s}\right)^3}$$

$$= \frac{1 - \frac{1}{p^{2s}}}{\left(1 - \frac{1}{p^s}\right)^4} = \frac{1 - \frac{a_p b_p}{p^{2s}}}{\left(1 - \frac{1}{p^s}\right) \cdot \left(1 - \frac{a_p b_p}{p^s}\right) \cdot \left(1 - \frac{a_p b_p}{p^s}\right)}.$$

Für alle $p \in \mathbb{P}$ mit $a_p = 1$ und $b_p \neq 1$ ist nach Aufgabe 59 b)

$$\sum_{\ell=0}^{\infty} \sum_{j=0}^{\ell} a_{p}^{j} \cdot \sum_{k=0}^{\ell} b_{p}^{k} \cdot \frac{1}{p^{\ell s}} = \sum_{\ell=0}^{\infty} \sum_{j=0}^{\ell} 1 \cdot \frac{1 - b_{p}^{\ell+1}}{1 - b_{p}} \cdot \frac{1}{p^{\ell s}}$$

$$= \frac{1}{1 - b_{p}} \cdot \sum_{\ell=0}^{\infty} (\ell + 1) \cdot \left(\frac{1}{p^{s}}\right)^{\ell} - \frac{b_{p}}{1 - b_{p}} \cdot \sum_{\ell=0}^{\infty} (\ell + 1) \cdot \left(\frac{b_{p}}{p^{s}}\right)^{\ell}$$

$$= \frac{\frac{1}{(1 - \frac{1}{p^{s}})^{2}} - \frac{b_{p}}{(1 - \frac{b_{p}}{p^{s}})^{2}}}{1 - b_{p}} = \frac{1 - \frac{2b_{p}}{p^{s}} + \frac{b_{p}^{2}}{p^{2s}} - b_{p} \cdot \left(1 - \frac{2}{p^{s}} + \frac{1}{p^{2s}}\right)}{(1 - b_{p}) \cdot \left(1 - \frac{1}{p^{s}}\right)^{2} \cdot \left(1 - \frac{b_{p}}{p^{s}}\right)^{2}}$$

$$= \frac{1 - \frac{b_{p}}{p^{2s}}}{\left(1 - \frac{1}{p^{s}}\right)^{2} \cdot \left(1 - \frac{b_{p}}{p^{s}}\right)^{2}} = \frac{1 - \frac{a_{p}b_{p}}{p^{2s}}}{\left(1 - \frac{1}{p^{s}}\right) \cdot \left(1 - \frac{b_{p}}{p^{s}}\right) \cdot \left(1 - \frac{a_{p}b_{p}}{p^{s}}\right)}$$

wegen

$$\left|\frac{1}{p^s}\right| = \frac{1}{p^{\text{Re}(s)}} < \frac{1}{p} < 1 \quad \text{und} \quad \left|\frac{b_p}{p^s}\right| < 1.$$

Analog folgt dieselbe Formel für alle $p \in \mathbb{P}$ mit $a_p \neq 1$ und $b_p = 1$.

Mit der Formel, die für die linke Seite aus dem Euler-Produkt gewonnen wurde, der Definition von g. und der Euler-Produkt-Darstellung von ζ ergibt sich

$$\sum_{n=1}^{\infty} \frac{(a*1)(n)\cdot(b*1)(n)}{n^s} = \frac{\zeta(s)\cdot D_a(s)\cdot D_b(s)\cdot D_{ab}(s)}{D_{ab}(2s)}.$$

b) Sei P_k : $\left\{ \begin{array}{ccc} \mathbb{N} & \to & \mathbb{C} \\ n & \mapsto & P_k(n) := n^k \end{array} \right\}$ für alle $k \in \mathbb{C}$.

Für alle $k \in \mathbb{C}$, alle $m \in \mathbb{N}$ und alle $n \in \mathbb{N}$ gilt

$$P_k(mn) = (mn)^k = m^k \cdot n^k = P_k(m) \cdot P_k(n).$$

 P_k ist also für alle $k\in\mathbb{C}$ vollständig multiplikativ mit

$$\delta_{P_{k}} = \sup_{\substack{p \in \mathbb{P} \\ P_{k}(p) \neq 0}} \frac{\ln\left(|P_{k}\left(p\right)|\right)}{\ln\left(p\right)} = \sup_{p \in \mathbb{P}} \frac{\ln\left(p^{\operatorname{Re}(k)}\right)}{\ln\left(p\right)} = \sup_{p \in \mathbb{P}} \left(\operatorname{Re}\left(k\right)\right) = \operatorname{Re}\left(k\right).$$

Für alle $w \in \mathbb{C}$ und alle $z \in \mathbb{C}$ ist $P_w \cdot P_z = P_{w+z}$, weil für alle $n \in \mathbb{N}$ gilt:

$$P_{w}(n) \cdot P_{z}(n) = n^{w} \cdot n^{z} = n^{w+z} = P_{w+z}(n)$$

Für alle $k \in \mathbb{C}$ und alle $s \in \mathbb{C}$ mit Re(s) > 1 + Re(k) gilt außerdem

$$D_{P_k}(s) = \sum_{n=1}^{\infty} \frac{P_k(n)}{n^s} = \sum_{n=1}^{\infty} \frac{n^k}{n^s} = \sum_{n=1}^{\infty} \frac{1}{n^{s-k}} = \zeta(s-k).$$

Zuguterletzt ist für alle $k \in \mathbb{C}$ und alle $n \in \mathbb{N}$

$$(P_k * 1)(n) = \sum_{d|n} P_k(d) \cdot 1\left(\frac{n}{d}\right) = \sum_{d|n} d^k \cdot 1 = \sum_{d|n} d^k = \sigma_k(n).$$

Damit folgt die Behauptung direkt aus Aufgabenteil a).