Albert-Ludwigs-Universität Freiburg Institut für Mathematik Abteilung für Reine Mathematik

Prof. Dr. D. Wolke Dipl.—Math. S. Feiler Übungen zur Vorlesung

Ergänzungen zur Elementaren Zahlentheorie

Wintersemester 2009/2010

10. Übungsblatt — Musterlösung 13. Januar 2010

Aufgabe 70 (Ein Irrationalitätskriterium)

a) Zeigen Sie für $p \in \mathbb{Z}$, $q \in \mathbb{N}$, $s \in \mathbb{Z}$ und $t \in \mathbb{N}$ mit $\frac{p}{q} \neq \frac{s}{t}$ die Ungleichung

$$\left| \frac{p}{q} - \frac{s}{t} \right| \ge \frac{1}{qt} \quad !$$

b) Zeigen Sie die Irrationalität von $\alpha \in \mathbb{R}$, falls es eine Funktion $f: \left\{ \begin{array}{c} \mathbb{N} \to \mathbb{R}^+ \\ x \mapsto f(x) \end{array} \right\}$, eine Folge $p: \left\{ \begin{array}{c} \mathbb{N} \to \mathbb{Z} \\ n \mapsto p_n \end{array} \right\}$ und eine Folge $q: \left\{ \begin{array}{c} \mathbb{N} \to \mathbb{N} \\ n \mapsto q_n \end{array} \right\}$ mit $(p_n, q_n) = 1$ für alle $n \in \mathbb{N}$, $\lim_{n \to \infty} q_n = \infty$, $\lim_{n \to \infty} \frac{f(q_n)}{q_n} = \infty$ und

$$\left|\alpha - \frac{p_n}{q_n}\right| < \frac{1}{f(q_n)}$$
 für alle $n \in \mathbb{N}$ gibt!

c) Können Sie mit diesem Kriterium zeigen, dass e irrational ist? Wenn ja, wie?

Lösung:

a) Seien $p \in \mathbb{Z}$, $q \in \mathbb{N}$, $s \in \mathbb{Z}$ und $t \in \mathbb{N}$ mit $\frac{p}{q} \neq \frac{s}{t}$.

Dann gilt

$$0 < \left| \frac{p}{q} - \frac{s}{t} \right| = \left| \frac{pt - qs}{qt} \right| = \frac{|pt - qs|}{qt},$$

was $pt - qs \in \mathbb{Z} \setminus \{0\}$ liefert.

Damit folgt

$$\left| \frac{p}{q} - \frac{s}{t} \right| = \frac{|pt - qs|}{qt} \ge \frac{1}{qt}.$$

b) Seien $\alpha \in \mathbb{R}$, $f: \left\{ \begin{array}{c} \mathbb{N} \to \mathbb{R}^+ \\ x \mapsto f(x) \end{array} \right\}$, $p: \left\{ \begin{array}{c} \mathbb{N} \to \mathbb{Z} \\ n \mapsto p_n \end{array} \right\}$ und $q: \left\{ \begin{array}{c} \mathbb{N} \to \mathbb{N} \\ n \mapsto q_n \end{array} \right\}$ mit $(p_n, q_n) = 1$ für alle $n \in \mathbb{N}$, $\lim_{n \to \infty} q_n = \infty$, $\lim_{n \to \infty} \frac{f(q_n)}{q_n} = \infty$ und

1

$$\left|\alpha - \frac{p_n}{q_n}\right| < \frac{1}{f(q_n)}$$
 für alle $n \in \mathbb{N}$.

Annahme: $\alpha \in \mathbb{Q}$. Dann gibt es ein $s \in \mathbb{Z}$ und ein $t \in \mathbb{N}$ mit (s,t) = 1 und $\alpha = \frac{s}{t}$.

Wegen $\lim_{n\to\infty} \frac{f(q_n)}{q_n} = \infty$ existiert ein $n_1 \in \mathbb{N}$ mit $f(q_n) > tq_n$ für alle $n \in \mathbb{N}$ mit $n \ge n_1$.

Sei $m \in \mathbb{N}$ mit $\frac{p_m}{q_m} = \alpha$. Dann gilt $sq_m = tp_m$ wegen $\alpha = \frac{s}{t}$.

Also ist t ein Teiler von sq_m und q_m ist ein Teiler von tp_m .

Wegen (s,t)=1 teilt t also q_m und wegen $(p_m,q_m)=1$ teilt q_m also t. Damit folgt $q_m=t$.

Wegen $\lim_{n\to\infty}q_n=\infty$ gibt es deshalb ein $n_2\in\mathbb{N}$ mit $\frac{p_n}{q_n}\neq\alpha$ für alle $n\in\mathbb{N}$ mit $n\geq n_2$.

Sei $n_0 := \max\{n_1; n_2\}$. Für alle $n \in \mathbb{N}$ mit $n \ge n_0$ sind $\frac{s}{t} \ne \frac{p_n}{q_n}$ und $f(q_n) > tq_n$.

Für alle $n \in \mathbb{N}$ mit $n \geq n_0$ folgt mit Aufgabenteil a) der Widerspruch

$$\frac{1}{f(q_n)} < \frac{1}{tq_n} \le \left| \frac{s}{t} - \frac{p_n}{q_n} \right| = \left| \alpha - \frac{p_n}{q_n} \right| < \frac{1}{f(q_n)}.$$

c) Nein.

Aufgabe 71 (Satz von Gelfond-Schneider)

Der Satz von Gelfond-Schneider besagt, dass für $\alpha \in \mathbb{A} \setminus \{0;1\}$ und $\beta \in \mathbb{A} \setminus \mathbb{Q}$ die Zahl $\alpha^{\beta} := e^{\beta \cdot \log(\alpha)}$ transzendent ist, wobei $\log(\alpha)$ eine Zahl ist, die in die Exponentialfunktion eingesetzt den Wert α liefert und mit \mathbb{A} die Menge der algebraischen Zahlen bezeichnet wird.

- a) Zeigen Sie, dass $\sqrt{14}^{\sqrt{35}}$, e^{π} und $e^{\pi \cdot \sqrt{163}} = \left[e^{\pi \cdot \sqrt{163}} \right] + 1 0,000\,000\,000\,000\,07...$ transzendent sind!
- b) Zeigen Sie die Äquivalenz des Satzes von GELFOND-SCHNEIDER zur folgenden Aussage! Von den Zahlen $\alpha \in \mathbb{C} \setminus \{0;1\}$, $\beta \in \mathbb{C} \setminus \mathbb{Q}$ und α^{β} ist mindestens eine transzendent.
- c) Seien $\alpha \in \mathbb{A} \setminus \{0\}$ und $\beta \in \mathbb{A} \setminus \{0;1\}$ derart, dass $c \cdot \log(\alpha) + d \cdot \log(\beta) \neq 0$ für alle $(c,d)^T \in \mathbb{Q}^2 \setminus \{(0,0)^T\}$ ist.

Zeigen Sie für alle $(\gamma, \delta)^T \in \mathbb{A}^2 \setminus \{(0, 0)^T\}$

$$\gamma \cdot \log(\alpha) + \delta \cdot \log(\beta) \neq 0$$
!

Lösung:

a) Nach Aufgabe 69 b) sind $\sqrt{14} = \sqrt[2]{2 \cdot 7} \notin \mathbb{Q}$ und $\sqrt{35} = \sqrt[2]{5 \cdot 7} \notin \mathbb{Q}$.

Wegen $\sqrt{14}^2 - 14 = 0$ und $\sqrt{35}^2 - 35 = 0$ sind $\sqrt{14} \in \mathbb{A}$ und $\sqrt{35} \in \mathbb{A}$. Trivialerweise gilt $0 < 1 = \sqrt{1} < \sqrt{14}$, also $0 \neq \sqrt{14} \neq 1$.

Mit dem Satz von Gelfond–Schneider folgt die Transzendenz von $\sqrt{14}^{\sqrt{35}}$.

Es ist
$$e^{\pi} = e^{(-i)\cdot \pi \cdot i} = (e^{-i\cdot \pi})^{i} = (-1)^{i}$$
.

Wegen -1 < 0 < 1 und (-1) + 1 = 0 ist $-1 \in \mathbb{A} \setminus \{0; 1\}$.

Da $i^2 + 1 = 0$ ist, gilt $i \in A$. Wegen $i \notin \mathbb{R}$ ist $i \notin \mathbb{Q}$.

Mit dem Satz von Gelfond-Schneider folgt die Transzendenz von e^{π} .

Es ist $e^{\pi \cdot \sqrt{163}} = e^{(-i) \cdot \pi \cdot i \cdot \sqrt{163}} = (e^{-i \cdot \pi})^{i \cdot \sqrt{163}} = (-1)^{i \cdot \sqrt{163}}$.

Wegen -1 < 0 < 1 und (-1) + 1 = 0 ist $-1 \in A \setminus \{0; 1\}$.

Da
$$(i \cdot \sqrt{163})^2 + 163 = 0$$
 ist, gilt $i \cdot \sqrt{163} \in A$.

Wegen $i \notin \mathbb{R}$ und $\sqrt{163} \in \mathbb{R}$ ist $i \cdot \sqrt{163} \notin \mathbb{R}$ und damit auch $i \cdot \sqrt{163} \notin \mathbb{Q}$.

Mit dem Satz von Gelfond-Schneider folgt die Transzendenz von $e^{\pi \cdot \sqrt{163}}$.

- b) Es sind zwei Richtungen zu zeigen.
 - \Rightarrow Es gelte der Satz von Gelfond-Schneider.

Seien $\alpha \in \mathbb{C} \setminus \{0; 1\}$ und $\beta \in \mathbb{C} \setminus \mathbb{Q}$.

Ist α transzendent, so ist nichts zu zeigen. Sei also α als algebraisch angenommen.

Ist β transzendent, so ist nichts zu zeigen. Sei also β als algebraisch angenommen.

Da $\alpha \in \mathbb{A} \setminus \{0;1\}$ und $\beta \in \mathbb{A} \setminus \mathbb{Q}$ sind, ist α^{β} nach dem Satz von Gelfond–Schneider transzendent.

 \Leftarrow Es gelte die Aussage aus der Aufgabenstellung.

Seien $\alpha \in \mathbb{A} \setminus \{0; 1\}$ und $\beta \in \mathbb{A} \setminus \mathbb{Q}$.

Da α und β nicht transzendent sind, muss also α^β transzendent sein.

c) Annahme: Es gibt ein $(\gamma, \delta)^T \in \mathbb{A} \setminus \{(0, 0)^T\}$ mit $\gamma \cdot \log(\alpha) + \delta \cdot \log(\beta) = 0$.

Ist $\gamma = 0$, so ist $\delta \neq 0$, es folgt $\delta \cdot \log(\beta) = 0$ und wegen $\delta \neq 0$ ergibt sich $\log(\beta) = 0$.

Aus $\gamma = 0$ folgt also $0 \cdot \log(\alpha) + 1 \cdot \log(\beta) = 0$ im Widerspruch zur Voraussetzung.

Es werde nun $\gamma \neq 0$ vorausgesetzt.

Dann folgt

$$\log\left(\alpha\right) = -\frac{\delta}{\gamma} \cdot \log\left(\beta\right).$$

Dabei ist $\frac{\delta}{\gamma} \notin \mathbb{Q}$, da sonst $1 \cdot \log(\alpha) + \frac{\delta}{\gamma} \cdot \log(\beta) = 0$ im Widerspruch zur Voraussetzung stünde.

Da A ein Körper ist, gilt $-\frac{\delta}{\gamma} \in \mathbb{A} \setminus \mathbb{Q}$.

Es ist

$$\beta^{-\frac{\delta}{\gamma}} = \left(e^{\log(\beta)}\right)^{-\frac{\delta}{\gamma}} = e^{-\frac{\delta}{\gamma} \cdot \log(\beta)} = e^{\log(\alpha)} = \alpha.$$

Wegen $\beta \in \mathbb{A} \setminus \{0; 1\}$ ist also nach dem Satz von Gelfond–Schneider α transzendent im Widerspruch zu $\alpha \in \mathbb{A} \setminus \{0\}$.

Aufgabe 72 (Die Menge der LIOUVILLE-Zahlen)

Zeigen Sie, dass die Menge $\mathbb{L}:=\{\alpha\in\mathbb{R}\,|\,\alpha \text{ ist eine Liouville-Zahl}\}$ eine überabzählbare Menge mit Lebesgue-Maß 0 ist!

Tipp: Für die Überabzählbarkeit variieren Sie das Beispiel aus der Vorlesung, indem Sie im Exponenten eine monoton wachsende Folge multiplizieren!

Für die Maß-Eigenschaft hilft es, zunächst $\mathbb{L} \cap (-m; m)$ mit $m \in \mathbb{N}$ zu betrachten.

Lösung:

• Es gibt überabzählbar viele monoton steigende Folgen in N.

<u>Annahme:</u> Es gibt nur abzählbar viele monoton steigende Folgen mit natürlichen Folgengliedern.

Für alle $\ell \in \mathbb{N}$ sei f_{ℓ} : $\left\{\begin{array}{ccc} \mathbb{N} & \to & \mathbb{N} \\ n & \mapsto & f_{\ell}\left(n\right) \end{array}\right\}$ monoton steigend derart, dass $f_{\ell} \neq f_{j}$ für alle $\ell \in \mathbb{N}$ und alle $j \in \mathbb{N}$ mit $j \neq \ell$ und

$$\{\,g:\mathbb{N}\to\mathbb{N}\,|\,g\text{ ist monoton steigend}\,\}=\{\,f_\ell:\mathbb{N}\to\mathbb{N}\,|\,\ell\in\mathbb{N}\,\}$$

sind. Definiere $f(1) := f_1(1) + 1$ und setze dann $f(n) := \max \{f(n-1); f_n(n) + 1\}$ für alle $n \in \mathbb{N}$.

Die Folge $f: \left\{ \begin{array}{ll} \mathbb{N} & \to & \mathbb{N} \\ n & \mapsto & f(n) \end{array} \right\}$ ist monoton steigend und unterscheidet sich für alle $\ell \in \mathbb{N}$ wegen $f(\ell) \geq f_{\ell}(\ell) + 1$ von f_{ℓ} .

Dies ist ein Widerspruch zur Wahl der f_{ℓ} mit $\ell \in \mathbb{N}$.

• Jede monoton steigende Folge in N liefert eine LIOUVILLE-Zahl.

Seien
$$g:$$
 $\left\{ egin{array}{ll} \mathbb{N} & \to & \mathbb{N} \\ n & \mapsto & g_n \end{array} \right\}$ monoton steigend und $\alpha_g:=\sum_{j=1}^{\infty} \frac{1}{2^{g_j\cdot j!}}.$

Seien
$$k: \left\{ \begin{array}{ccc} \mathbb{N} & \to & \mathbb{N} \\ n & \mapsto & k_n := 2^{g_n \cdot n!} \end{array} \right\}$$
 und $b: \left\{ \begin{array}{ccc} \mathbb{N} & \to & \mathbb{N} \\ n & \mapsto & b_n := k_n \cdot \sum_{j=1}^n \frac{1}{2^{g_j \cdot j!}} \end{array} \right\}$.

Für alle $n \in \mathbb{N}$ ist

$$b_n = k_n \cdot \sum_{j=1}^n \frac{1}{2^{g_j \cdot j!}} = 2^{g_n \cdot n!} \cdot \left(\frac{1}{2^{g_n \cdot n!}} + \sum_{j=1}^{n-1} \frac{1}{2^{g_j \cdot j!}} \right) = 1 + 2 \cdot \sum_{j=1}^{n-1} 2^{g_n \cdot n! - g_j \cdot j!}$$

ungerade und damit teilerfremd zu k_n , da die Exponenten der Summanden der letzten Summe wegen der Monotonie von g und ! nicht-negative ganze Zahlen sind.

Für alle $n \in \mathbb{N}$ gilt

$$\left|\alpha_{g} - \frac{b_{n}}{k_{n}}\right| = \sum_{j=n+1}^{\infty} \frac{1}{2^{g_{j} \cdot j!}} = \frac{1}{2^{g_{n+1} \cdot (n+1)!}} \cdot \sum_{j=n+1}^{\infty} \frac{1}{2^{g_{j} \cdot j! - g_{n+1} \cdot (n+1)!}}$$

$$\leq \frac{1}{2^{g_{n+1} \cdot (n+1)!}} \cdot \sum_{j=n+1}^{\infty} \frac{1}{2^{g_{j} \cdot (j! - (n+1)!)}} \leq \frac{1}{2^{g_{n} \cdot n! \cdot (n+1)}} \cdot \sum_{j=n+1}^{\infty} \frac{1}{2^{j! - (n+1)!}}$$

$$\leq \frac{1}{2^{g_{n} \cdot n! \cdot n + g_{n} \cdot n!}} \cdot \sum_{j=0}^{\infty} \frac{1}{2^{j}} = \frac{2^{-g_{n} \cdot n!}}{(2^{g_{n} \cdot n!})^{n}} \cdot \frac{1}{1 - \frac{1}{2}} = \frac{2^{-g_{n} \cdot n! + 1}}{k_{n}^{n}}.$$

Wegen $\lim_{n\to\infty} 2^{-g_n \cdot n! + 1} = 0$ ist $\alpha_g \in \mathbb{L}$.

Da es überabzählbar viele monoton steigende Folgen mit natürlichen Folgengliedern gibt und die α -Werte zweier verschiedener Folgen unterschiedlich sind, gibt es überabzählbar viele LIOUVILLE-Zahlen.

• Das Lebesgue—Maß von L

Für alle $q \in \mathbb{N} \setminus \{1\}$, alle $n \in \mathbb{N}$ und alle $m \in \mathbb{N}$ sei $\mathcal{A}_{q,n,m} := \bigcup_{p=-qm}^{qm} \left(\frac{p}{q} - \frac{1}{q^n}; \frac{p}{q} + \frac{1}{q^n}\right)$.

Dann gilt $\mathbb{L} \cap (-m; m) \subseteq \bigcup_{q=2}^{\infty} \mathcal{A}_{q,n,m}$ für alle $m \in \mathbb{N}$ und alle $n \in \mathbb{N}$.

 λ bezeichne das Lebesgue–Maß. Für alle $q \in \mathbb{N} \setminus \{1\}$, alle $n \in \mathbb{N}$ und alle $p \in \mathbb{Z}$ ist

$$\lambda\left(\left(\frac{p}{q}-\frac{1}{q^n};\frac{p}{q}+\frac{1}{q^n}\right)\right)=\left(\frac{p}{q}+\frac{1}{q^n}\right)-\left(\frac{p}{q}-\frac{1}{q^n}\right)=\frac{2}{q^n}.$$

Für alle $m \in \mathbb{N}$ und alle $n \in \mathbb{N} \setminus \{1; 2\}$ folgt aus der Theorie der RIEMANN'schen Untersummen

$$\lambda \left(\mathbb{L} \cap (-m; m) \right) \leq \lambda \left(\bigcup_{q=2}^{\infty} \mathcal{A}_{q,n,m} \right) \leq \sum_{q=2}^{\infty} \lambda \left(\bigcup_{p=-qm}^{qm} \left(\frac{p}{q} - \frac{1}{q^n}; \frac{p}{q} + \frac{1}{q^n} \right) \right)$$

$$\leq \sum_{q=2}^{\infty} \sum_{p=-qm}^{qm} \lambda \left(\left(\frac{p}{q} - \frac{1}{q^n}; \frac{p}{q} + \frac{1}{q^n} \right) \right) = \sum_{q=2}^{\infty} \sum_{p=-qm}^{qm} \frac{2}{q^n}$$

$$= \sum_{q=2}^{\infty} \frac{2}{q^n} \cdot (qm - (-qm) + 1) = \sum_{q=2}^{\infty} \frac{4qm + 2}{q^n}$$

$$\leq (4m + 2) \cdot \sum_{q=2}^{\infty} \frac{1}{q^{n-1}} \leq (4m + 2) \cdot \int_{1}^{\infty} q^{-n+1} dq$$

$$= (4m + 2) \cdot \left[\frac{q^{-n+2}}{-n+2} \right]_{q=1}^{q=\infty} = \frac{4m + 2}{n-2}.$$

Also existiert für alle $m \in \mathbb{N}$ und alle $\varepsilon \in \mathbb{R}^+$ ein $n_m(\varepsilon) \in \mathbb{N} \setminus \{1; 2\}$, so dass

$$\lambda\left(\mathbb{L}\cap(-m;m)\right) \leq \frac{4m+2}{n-2} < \varepsilon$$

für alle $n \in \mathbb{N}$ mit $n \geq n_m(\varepsilon)$ ist.

Deshalb ist $\mathbb{L} \cap (-m; m)$ für alle $m \in \mathbb{N}$ eine Nullmenge.

Damit ist auch $\mathbb{L} = \bigcup_{m=1}^{\infty} (\mathbb{L} \cap (-m; m))$ als abzählbare Vereinigung von Nullmengen wieder eine Nullmenge.