05.12.2006

Prof. Dr. D. Wolke Y. Buttkewitz

Übungen zur Vorlesung

Analytische Zahlentheorie

WS 2006/07

Blatt 7

Abgabe: Dienstag, 12.12.2006 vor der Vorlesung

Aufgabe 19.

Für $k \in \mathbb{N}$ seien $1 = a_1 < \cdots < a_{\varphi(k)} \le k$ die $\varphi(k)$ reduzierten Reste modulo k. χ_1 (= Hauptcharakter mod k), $\chi_2, \ldots, \chi_{\varphi(k)}$ seien die Charaktere mod k. Die "Charakter–Matrix" $A = (\alpha_{i\ell})$ ist definiert durch

$$\alpha_{i\ell} = \chi_{\ell}(a_i).$$

Berechnen Sie $A \cdot \bar{A}^T$.

Aufgabe 20.

Bezeichne für n > 1 f(n) die Anzahl der Zerlegungen von n als Produkt von Zahlen > 1, d.h.

$$f(n) = \sum_{k>1} \#\{(n_1, \dots, n_k) \in \mathbb{N}^k, n_j \ge 2, n = n_1 \dots n_k\}.$$

f(1) = 1. Dann gilt für ein $\sigma_0 > 1$ und alle s mit Re $s > \sigma_0$

$$\sum_{n=1}^{\infty} f(n) \ n^{-s} = (2 - \zeta(s))^{-1}.$$

Bestätigen Sie die Identität zumindest formal, d.h. ohne Konvergenz-Überlegungen.

Aufgabe 21.

Sei k(n) = kgV(1, ..., n) Dann gilt

$$k(n) = \exp(n(1 + o(1))) \quad (n \to \infty).$$