Exercise sheet 4 04.06.2020

In all the following exercises, k will always denote an algebraically closed field.

Exercise 4.1.

- 1. Show that for a topological space X the following are equivalent:
 - X is irreducible
 - X is non-empty and each non-empty open subset in X is dense
- 2. Show that a subspace $Y \subseteq X$ is irreducible if and only if its closure $\overline{Y} \subseteq X$ is irreducible.
- 3. Show that if $f: X \to Y$ is a continuous map between topological spaces and X is irreducible, then also f(X) is irreducible.
- 4. Show that for any subspace $Y \subseteq X$ it holds $\operatorname{kdim}(Y) \leq \operatorname{kdim}(X)$; furthermore if X is irreducible and finite dimensional, and Y is closed with $\operatorname{kdim}(Y) = \operatorname{kdim}(X)$, then necessarily Y = X.

Disprove the last statement when X is not irreducible or Y is not closed.

Exercise 4.2.

- 1. Show that $Z(y x^2)$ and Z(xy 1) are irreducible subspaces of \mathbb{A}_k^2 . (For your info: these are all the irreducible conics in the plane up to isomorphism).
- 2. Show that $Z(x^3 y^2)$, $Z(x^3 + x^2 y^2) \subseteq \mathbb{A}^2_k$ are irreducible.
- 3. Show that $Z(x^2 + y^2 z^2 1)$, $Z(x^2 y, x^3 z) \subseteq \mathbb{A}^3_k$ are irreducible.
- 4. Describe the irreducible components of $Z(x^2 yz, xz x) \subseteq \mathbb{A}^3_k$.

(**Hint:** to test irreducibility one can use various strategies, I'll recall here the *Eisenstein criterion*, which is often useful:

Let R be an UFD and $p(x) = a_n x^n + ... + a_0 \in R[x]$ a primitive (i.e. the gcd of its coefficients is 1) polynomial with coefficients in R. If there exists a prime ideal $P \subseteq R$ such that

- $a_n \notin P$
- $a_i \in P, \, \forall i = 0, ..., n-1$
- $a_0^2 \notin P$

then p(x) is irreducible in R[x].)

Exercise 4.3.

1. Show that the determinant $det \in k[x_{ij}]_{1 \leq i,j \leq n}$ is an irreducible polynomial.

(Hint: show first that $Z(det)\subseteq {\mathbb A}_k^{n^2}$ is irreducible, since it is the image of the map

 $\begin{aligned} \operatorname{Mat}_n(k) \times \operatorname{Mat}_n(k) &\longrightarrow \operatorname{Mat}_n(k) \\ (A, B) &\longmapsto \operatorname{Adiag}(1, ..., 1, 0)B \end{aligned}$

Now use the Nullstellensatz and some other argument to conclude...)

2. Show that $\operatorname{SL}_n(k) \subseteq \mathbb{A}_k^{n^2}$ is irreducible.

Exercise 4.4. Let X be an affine variety over k, and $Y, Z_1, ..., Z_n \subseteq X$ closed subspaces. Suppose that Z_i is irreducible and that $Z_i \notin Y$ for all i. Show then that there exists a regular function $f \in \mathcal{O}(X)$ vanishing identically on Y and not vanishing identically on each Z_i .

(Hint: Translate the problem in algebraic terms...).

Exercise 4.5. Let R be a commutative ring, $S \subseteq R$ a subset. Show that:

- 1. loc: $R \to S^{-1}R$ is injective if and only if S does not contain zero divisors.
- 2. loc: $R \to S^{-1}R$ is an isomorphism if and only if $S \subseteq R^{\times}$, i.e. all elements in S are invertible in R.
- 3. $S^{-1}R = \{0\}$ if and only if $0 \in |S\rangle$.
- 4. if $I \subseteq R$ is an ideal and $\overline{S} \subseteq R/I$ denotes the image of S under the canonical projection to the quotient, then there is a canonical isomorphism

$$\overline{S}^{-1}(R/I) \widetilde{\rightarrow} (S^{-1}R)/(S^{-1}I)$$

5. if R is an integral domain, then inside Quot(R) holds the equality

$$R = \bigcap_{\mathfrak{m} \in \mathrm{Max}R} R_{\mathfrak{m}}$$