Exercise sheet 5 16.06.2020

Exercise 5.1. Let R be a commutative ring, $S \subseteq R$ a subset, and loc : $R \to S^{-1}R$ the localization map.

- 1. If $I \subseteq R$ is an ideal, show that $S^{-1}I = S^{-1}R$ if and only if $I \cap |S\rangle \neq \emptyset$.
- 2. During the lectures it has been explained that the map

 loc^{-1} : {ideals in $S^{-1}R$ } \rightarrow {ideals in R}

is an injection, with the map $S^{-1}:\{\text{ideals in }R\}\to\{\text{ideals in }S^{-1}R\}$ as a left inverse.

Show with an example that this map is in general not also a right inverse of loc^{-1} (and so loc^{-1} is in fact not surjective), even if one restricts it to the set of ideals which do not intersect $|S\rangle$.

3. Show that an ideal $I \subseteq R$ lies in the image of loc^{-1} if and only if no element of S is a zero divisor in R/I.

Exercise 5.2. Let R be a commutative ring, $S \subseteq R$ a subset, and loc : $R \to S^{-1}R$ the localization map.

- 1. Show that $\sqrt{S^{-1}I} = S^{-1}\sqrt{I}$, for any ideal $I \subseteq R$.
- 2. If R is a nilpotent-free ring, show that for any $f \in R$ the ideal $(fx 1) \subseteq R[x]$ is a radical ideal.

(**Remark:** This could be proven via elementary methods, but let's not allow them here. Rather, I want you to prove it showing that in general R[x]/(fx-1) is isomorphic to a certain localization of R...and then using the previous point).

Exercise 5.3. Let X be an affine variety over $k = \overline{k}$ and $f \in \mathcal{O}(X)$. Show that the map

 $\begin{cases} \text{closed irreducible} \\ \text{subsets in } X_f \end{cases} \rightarrow \begin{cases} \text{closed irreducible} \\ \text{subsets in } X, \text{ not} \\ \text{contained in } Z(f) \end{cases}$ $Y \qquad \mapsto \qquad \bar{Y}$

is a bijection. What's the inverse map?

Exercise 5.4.

- 1. Give an example of a ring with only one minimal prime ideal without being an integral domain.
- 2. Show that a nilpotent-free ring with only one minimal prime ideal is necessarily an integral domain.