Exercise sheet 6 24.06.2020

In all the following exercises, R will always denote a commutative ring with 1, and $S \subseteq R$ a subset in R.

Exercise 6.1. Let M be a R-module.

- 1. Show that if M is finitely generated, then $S^{-1}M = \{0\}$ if and only if there exists $s \in |S\rangle$ such that $sM = \{0\}$. What if M is not finitely generated?
- 2. Let $L \to M \to N$ be a sequence of *R*-modules. Show that it is exact if and only if the corresponding sequence $L_{\mathfrak{m}} \to M_{\mathfrak{m}} \to N_{\mathfrak{m}}$ is exact for every maximal ideal $\mathfrak{m} \subseteq R$.
- 3. Show that localization commutes with finite intersections, i.e. if $M_i \subseteq M$ are submodules, i = 1, ..., n, then inside $S^{-1}M$ one gets the equality $S^{-1}(\bigcap_{i=1}^n M_i) = \bigcap_{i=1}^n S^{-1}M_i$. What about infinite intersections?
- **Exercise 6.2.** 1. Let R be and integral domain and suppose $0 \notin S$, $S \nsubseteq R^{\times}$. Show that $S^{-1}R$ is not a finitely generated R-module.
 - 2. Let M be a finitely generated R-module (R not necessarily integral anymore). Show that a surjective R-module endomorphism $\phi : M \to M$ is necessarily an isomorphism.

Deduce that in a free R-module of rank n, a set of n generators is necessarily a basis.

(**Hint:** Look at M as an R[x] module, defining $x \cdot m := \phi(m)$; the hypothesis now translates to M = IM, where I = (x)...)

Exercise 6.3. An integral domain R is called *integrally closed* if R coincides with its own integral closure inside its quotient field.

- 1. Show that if R is an UFD, then it is integrally closed.
- 2. Show that an integral domain R is integrally closed $\Leftrightarrow R_{\mathfrak{p}}$ is integrally closed for all $\mathfrak{p} \subseteq R$ prime ideals $\Leftrightarrow R_{\mathfrak{m}}$ is integrally closed for all $\mathfrak{m} \subseteq R$ maximal ideals.
- 3. Describe the integral closures of the rings of regular functions on the Neil'sche parabola and on the nodal cubic.
- 4. Show that "being an integral extension is something about maps, not about spaces", i.e. find three affine varieties X, Y_1, Y_2 with $Y_1 \cong Y_2$, and dense morphisms $\varphi_i : Y_i \to X$ such that $\mathcal{O}(X) \subseteq \mathcal{O}(Y_1)$ is an integral extension, while $\mathcal{O}(X) \subseteq \mathcal{O}(Y_2)$ is not.