Exercise sheet 9 15.07.2020

Prof.: Wolfgang Soergel

Tutor: Giovanni Zaccanelli

In all the following exercises, k will always denote an algebraically closed field.

Exercise 9.1. A variety is said **normal** if $\mathcal{O}_{X,x}$ is an integrally closed domain for all $x \in X$.

- 1. Show that X is normal if and only if any affine open subvariety of X is normal.
- 2. Show that, if X is affine, this definition coincides with the one given in the previous exercise sheet.
- 3. Show that any normal variety is the disjoint union of its irreducible components.

Exercise 9.2. Define the **homogenization** map $h_0: k[t_1,...,t_n] \to k[x_0,...,x_n]$ as $h_0(0) = 0$ and $h_0(p) := x_0^{\deg(p)} p(\frac{x_1}{x_0},...,\frac{x_n}{x_0})$, if p is non-zero. Consider then the embedding

$$i_0: \mathbb{A}^n_k \to \mathbb{P}^n_k$$

 $(t_1, \dots, t_n) \mapsto [1: t_1: \dots: t_n]$

- 1. Show that if $I \subseteq k[t_1, ..., t_n]$ is a radical (resp. prime) ideal, then $\langle h_0(I) \rangle \subseteq k[x_0, ..., x_n]$ is a radical (resp. prime) homogeneous ideal. (**Hint:** it could be useful to realize that, for homogeneous ideals, one can check radicality (resp. primality) using just homogeneous elements...)
- 2. Show that, for any ideal $I \subseteq k[t_1,...,t_n]$, it holds $\overline{i_0(Z(I))} = Z^*(h_0(I))$.
- 3. Show that in general, if $f_1, ..., f_n \in k[t_1, ..., t_n]$, it is not true that $\overline{i_0(Z(\{f_1, ..., f_n\}))} = Z^*(h_0(f_1), ..., h_0(f_n))$. (**Hint:** look, for example, at $Z(x, y x^2) \subseteq \mathbb{A}^2_k$...)
- 4. Show that the projective closure of an affine variety strongly depends on the chosen embedding, i.e. find $X = Z(I) \subseteq \mathbb{A}_k^n$, $Y = Z(J) \subseteq \mathbb{A}_k^m$ such that $X \cong Y$ but $\overline{i_0(X)} \ncong \overline{i_0(Y)}$ (even assuming n = m). (**Hint:** look, for example, at Z(y x) and $Z(y x^3) \subseteq \mathbb{A}_k^2$...and use the first point of the previous exercise.)

Exercise 9.3. Let $X \subseteq \mathbb{P}_k^n$, $Y \subseteq \mathbb{P}_k^m$ be two embedded projective varieties.

- 1. Show that if $\mathcal{O}^*(X)$ and $\mathcal{O}^*(Y)$ are isomorphic as graded rings, then X and Y are isomorphic.
- 2. Show that if X and Y are isomorphic, $\mathcal{O}^*(X)$ and $\mathcal{O}^*(Y)$ are not necessarily isomorphic (even as ungraded rings). (**Hint:** look, for example, at \mathbb{P}^1_k and $Z(x_0^2 x_1 x_2) \subseteq \mathbb{P}^2_k$...)

Exercise 9.4. Let chark=p>0 and let $X=(X,\mathcal{O})$ be a variety over k. Define its **Frobenius twist** $X^{[1]}:=(X,\mathcal{O}^{[1]})$ via $\mathcal{O}^{[1]}(U):=\{f^p\mid f\in\mathcal{O}(U)\}.$

Prof.: Wolfgang Soergel

Tutor: Giovanni Zaccanelli

- 1. Show that $X^{[1]}$ is actually a variety, and that the identity on X defines a morphism of varieties $X \to X^{[1]}$ that in general is not an isomorphism.
- 2. Show that each morphism $X \to Y$ naturally induces a morphism $X^{[1]} \to Y^{[1]}$ and that, with this assignment, $X \mapsto X^{[1]}$ defines an auto-equivalence of the category of varieties over k.