Abteilung für mathematische Logik

Prof. Dr. Amador Martin-Pizarro Übungen: Dr. Zaniar Ghadernezhad

Modelltheorie

Wintersemester 2017/18 Übungsblatt 3 **Abgabe:** 14.11.2017

Aufgabe 1. (4 Punkte)

Sei T die Theorie des Zufallsgraphen in der Sprache $\mathcal{L} = \{R\}$ (siehe Aufgabe 1 im Blatt 0). Angenommen, dass T widerspruchsfrei ist, zeige, dass T Quantorenelimination hat und vollständig ist

Aufgabe 2. (6 Punkte)

Sei $\mathcal{L} = \{E_n\}_{1 \geq n \in \mathbb{N}}$ eine Sprache, wobei jedes E_n ein zweistelliges Relationszeichen ist. Betrachte die Theorie T in der Sprache \mathcal{L} , deren Modelle genau die \mathcal{L} -Strukturen derart sind, dass jedes E_n eine Äquivalenzrelation ist, wobei E_1 unendlich viele Klassen besitzt und $E_{n+1} \subset E_n$. Ferner zerlegt jede E_n -Klasse in unendlich vielen E_{n+1} -Klassen.

- 1. Gib eine Axiomatisierung von T an.
- 2. Zeige, dass T widerspruchsfrei ist.

HINWEIS: Sei $\mathbb{N}^{\mathbb{N}}$ die Menge der abzählbaren Folgen aus natürlichen Zahlen. Für f und g aus $\mathbb{N}^{\mathbb{N}}$, setze $E_1(f,g)$ falls f(1)=g(1). Wie definiert man nun E_n , so dass $\mathbb{N}^{\mathbb{N}}$ ein Modell von T ist?

3. Zeige, dass T Quantorenelimination hat und vollständig ist.

Aufgabe 3. (2 Punkte) In der Ringsprache \mathcal{L}_{Ring} , sei ACF_p die Theorie algebraisch abgeschlossener Körper der Charakteristik p, wobei p entweder 0 oder Primzahl ist. Gegeben eine \mathcal{L}_{Ring} -Formel $\varphi(x, y_1, \ldots, y_n)$, zeige, dass es eine natürliche Zahl N derart gibt, dass für jedes Tupel (a_1, \ldots, a_n) aus einem Modell K von ACF_p die Menge

$$\varphi(K, a_1, \dots, a_n) = \{b \in K \mid K \models \varphi(b, a_1, \dots, a_n)\}\$$

entweder unendlich oder der Mächtigkeit höchstens N ist.

Aufgabe 4. (8 Punkte)

Sei \mathcal{L} die Sprache, welche aus einem zweistelligem Relationszeichen E und einem einstelligen Funktionszeichen f besteht. Betrachte die Klasse \mathcal{K} von \mathcal{L} -Strukturen \mathcal{A} derart, dass $E^{\mathcal{A}}$ eine Äquivalenzrelation auf A mit unendlich vielen Klassen ist. Ferner ist die Abbildung $f^{\mathcal{A}}$ eine Bijektion ohne Zykeln, welche jede $E^{\mathcal{A}}$ -Klasse permutiert, das heißt:

- Es existiert kein a aus A mit $f^n(a) = a$ für eine natürliche Zahl $n \ge 1$.
- Für jedes A aus A gilt $E^{\mathcal{A}}(a, f^{\mathcal{A}}(a))$.
- 1. Zeige, dass die Klasse \mathcal{K} axiomatisierbar ist.

2. Zeige, dass \mathcal{K} nicht leer ist (Insbesondere ist $\mathrm{Th}(\mathcal{K})$ widerspruchsfrei). **HINWEIS:** Gib eine geeignete \mathcal{L} -Struktur auf $\mathbb{Z} \times \mathbb{Z}$ an.

- 3. Gegeben \mathcal{A} in \mathcal{K} , zeige, dass es eine elementare Erweiterung $\mathcal{A} \preceq \mathcal{M}$ derart gibt, welche unendlich viele neue $E^{\mathcal{M}}$ -Klassen besitzt, wobei jede $E^{\mathcal{M}}$ -Klasse unendlich viele $f^{\mathcal{M}}$ -Orbits hat.
- 4. Zeige, dass $Th(\mathcal{K})$ Quantorenelimination hat und vollständig ist.