## A note on the Baldwin-Lachlan Theorem

Katrin Tent & Martin Ziegler

January 25, 2015

## Abstract

We explain a variant of the proof of the Baldwin-Lachlan Theorem in [TZ] which does not use the pregeometries arising from strongly minimal sets.

In a forthcoming revised version of [TZ] we will give the following variant of the proof of the Baldwin-Lachlan Theorem. This is Theorem 5.8.1 in [TZ] and all references given below refer to that book. The new proof will be inserted right after Corollary 5.7.4. and does not use the notion of a pregeometry. We first note the following:

**Proposition 0.1.** If T is strongly minimal, then T is  $\kappa$ -categorical for all uncountable  $\kappa$ .

Proof. By Lemma 5.2.8 it suffices to show that all uncountable models are saturated. Let  $\mathfrak{M}$  be a model of T of cardinality  $\kappa > \aleph_0$  and let  $A \subset M$  with |A| < |M|. Let  $p(x) \in S(A)$ . If p(x) is algebraic, then clearly p(x) is realised in M. Otherwise p(x) is realised by any  $b \in M \setminus \operatorname{acl}(A)$  since there is a unique non-algebraic type by Lemma 5.7.3. Since  $|\operatorname{acl}(A)| \leq \max\{|T|, |A|\} < |M| = \kappa$ , this proves the proposition.

We also note:

**Remark 0.2.** If T does not have a Vaughtian pair, then for any model  $\mathfrak{M}$  of T and any non-algebraic formula  $\varphi(x) \in L(M)$  we have  $|\varphi(\mathfrak{M})| = |M|$  by the Löwenheim-Skolem Theorem.

**Theorem 0.3.** Suppose T is a countable theory and  $\kappa$  is an uncountable cardinal. Then T is  $\kappa$ -categorical if and only if T is  $\omega$ -stable and does not have a Vaughtian pair.

*Proof.* The proof that a  $\kappa$ -categorical theory is  $\omega$ -stable and does not have a Vaughtian pair remains the same.

For the other direction we argue as follows: let  $\mathfrak{M}_0$  be the prime model of T and let  $\varphi(x) \in L(M_0)$  be a minimal formula, which both exist since T is totally transcendental. Since T does not have a Vaughtian pair, it eliminates by Lemma 5.5.7 the quantifier  $\exists^{\infty} x$  so that  $\varphi(x)$  is in fact strongly minimal.

Now let  $\mathfrak{M}, \mathfrak{N}$  be models of T of cardinality  $\kappa > \aleph_0$ . We may assume that  $\mathfrak{M}_0$  is an elementary submodel of  $\mathfrak{M}, \mathfrak{N}$ . Since T does not have a Vaughtian pair, we have  $|\varphi(\mathfrak{M})| = |\varphi(\mathfrak{N})| = \kappa$ .

Since  $\mathfrak{M}, \mathfrak{N}$  are minimal over  $\varphi(\mathfrak{M}), \varphi(\mathfrak{N})$  by Lemma 5.3.8 it suffices to define an elementary bijection from  $\varphi(\mathfrak{M})$  to  $\varphi(\mathfrak{N})$ .

This can be done exactly as in Lemma 5.2.8 simplified here by the fact that over every subset of  $\varphi(\mathfrak{M}), \varphi(\mathfrak{N})$  there is a unique non-algebraic type in  $\varphi(\mathfrak{M}), \varphi(\mathfrak{N})$  as in the proof of Proposition 0.1.

## References

[TZ] K. Tent, M. Ziegler, A course in model theory, ASL Lecture Notes in Logic, Cambridge University Press, 2012.