A Course in Model theory¹ Errata

K. Tent and M. Ziegler

November 28, 2014

 $^{1}\mathrm{Cambridge}$ University Press, 2012

We thank M. Junker, A. Berarducci, A. Blumensath, D. Müller and D. Pierce for bugreports.

- In some places, the use of the word *either* is not justified. Even though it should not cause confusion, remove the word in Exercise 8.2.6,
- Definition 1.2.10, Footnote 5: we replace each *bound* occurrence by an unused variable.
- Exercise 2.3.1, part 2: The structure is $(\mathbb{Q}, P_r, Q_r)_{r \in \mathbb{R}}$.
- In the proof of Theorem 3.1.8, b) \Rightarrow a), one should add that \mathfrak{A} and \mathfrak{B}^0 are models of T_1 and T_2 , respectively,
- The Morleyisation of T as discussed after Definition 3.2.1 should use 0-ary relation symbols. Otherwise it does not have quantifier elimination if T is consistent, incomplete and L has no constants.
- Exercise 3.2.1, part 1: For any T-ec-structure \mathfrak{M} ...
- Theorem 3.2.5: In c) we may assume that \mathfrak{A} is *finitely generated*. This is used in later applications.
- Proof of Theorem 3.3.22, third paragraph: Replace $g(a, da, \ldots, d^{n-1}a) \neq 0$ by $g(b, db, \ldots, d^{n-1}b) \neq 0$.
- In Exercise 3.3.1, replace

$$\bigwedge_{i \neq j}$$
 by $\bigwedge_{i,j}$

- The first pragraph of Section 4.2 misleadingly claims a connection between the Compactness Theorem and the compactness of the space of types.
- In Definition 5.2.5, do not assume that T is countable.
- Proof of Lemma 6.3.2: Choose \overline{b}^{2i} algebraically independent over $a\overline{b}^0 \dots \overline{b}^{2i-1}$ (not only over $\overline{b}^0 \dots \overline{b}^{2i-1}$).
- Proof of Lemma 6.3.6: Replace

This implies that diff (a_1, a_2) only depends on $tp(a_1, a_2)$.

by

Independence of the model implies that $diff(a_1, a_2)$ only depends on $tp(a_1, a_2)$.

• Definition 8.1.1, part 1: ... there is some $m \in M$ with $\varphi(x, m) \in p$.

- The definition before Corollary 7.2.7 should read: We call q a forking extension if q forks over A.
- Proof of Corollary 8.1.8: the formula should read

 $\models \exists x, y \ \varphi(x, y, c) \land \varphi_1(x, a', h'_1) \land \varphi_2(y, b', h'_2).$

- Proof of Lemma 8.3.5, last paragraph: a is a realization of $p \upharpoonright Mb$.
- Exercise 8.3.5: A type p being stable should be defined as: for no formula $\varphi(x, y)$ there are elements a_0, a_1, \ldots satisfying p(x) and b_0, b_1, \ldots such that $\models \varphi(a_i, b_j) \Leftrightarrow i < j$.
- Proof of Lemma 8.4.10: $\ldots c_1 \ldots c_m \in \operatorname{acl}(e)$.
- Proof of Theorem 8.5.10: in the second to last paragraph, it should read Let μ be the cardinal given by WEAK BOUNDEDNESS applied to p.
- Exercise 8.5.2: Let $p \in s(B)$ and $q \in S(B)$ be two different types which do not fork over $A \subseteq B...$
- Before Lemma 10.4.1: \dots induced by M and N.
- Before Theorem 10.4.8: ... we say that $M \in \mathcal{K}_{\mu}$ is \mathcal{K}_{μ} -saturated if for all finite $A \leq M$ and *finite* strong extensions C of A...
- Definition B.4.10: The reader should keep in mind that we define procyclic fields to be perfect.
- After Remark C.1.1: A pregeometry in which points and the empty set are closed, i.e., in which

 $cl(\emptyset) = \emptyset$ and $cl(x) = \{x\}$ for all $x \in X$,

is called *geometry*.

- Discussion after Definition C.1.9: Add the sentence
 Note that the proof shows that tr. deg(K) > 3 actually suffices.
- Append the following sentence to the proof of Lemma C.1.11: Since c cannot be in the closure of $\{a_1, \ldots, a_{n-2}\} \cup (A \cap B)$, we know by induction that $\{a_1, \ldots, a_{n-2}, c\}$ is independent over B, which contradicts $c \in B'$.
- Replace the last paragraph before Exercise C.1.1 by The arguments on page 205 show also that a field of transcendence degree at least 4 is not locally modular. Just replace F by a subfield of transcendence degree 1.
- Solution to Exercise 6.2.8: ... and $\varphi(x, a_1) \lor \cdots \lor \varphi(x, a_n) \ldots$
- Solution to Exercise 7.1.3: ... implies a conjunction $\bigvee_{\ell < d} \varphi_{\ell}(x, b)$ of formulas which *divide* over A.