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The purpose of this note is to prove the following:

Theorem 1 Every bounded hyperimaginary is a class of a bounded type–defin-
able equivalence relation.

Let C be a big saturated model. An equivalence relation E between tuples
of elements of C is type–definable if it is defined by a set of formulas without
parameters. The tuples may be infinite, but their length should be smaller than
the size of C. E is bounded if it has few classes compared with the size of C.
Bounded type–definable equivalence relations on a type–definable subclass of C
are defined similarly.

A class of a type–definable equivalence relation is a hyperimaginary. A hy-
perimaginary is bounded if it has few conjugates under automorphisms of C. Of
course all classes of a bounded type–definable equivalence relation are bounded
hyperimaginaries. By the proposed theorem all bounded hyperimaginaries oc-
cur in this way.

Let KP denote the finest bounded type–definable equivalence relation1. We
will prove Theorem 1 in the following equivalent form:

Theorem 2 Let D a type–definable subclass of C. Then KP ∩ (D × D) is the
finest bounded type–definable equivalence relation on D.

To see that this implies Theorem 1 consider a bounded hyperimaginary Ea. The
union D of all conjugates of Ea is type–definable and E ∩ (D×D) is a bounded
type–definable equivalence relation on D. Since KP refines E on D and since D
is a union of KP–classes

F = KP ∪ (E ∩ (D× D))

defines an equivalence relation, which is bounded, type–definable and satisfies
Ea = Fa.

1KP depends of course on the length of the tuples under consideration. To ease notation
we will assume all tuples to be of length 1.
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Definition A reflexive and symmetric relation R on a set C is thick if there
is no infinite R–anti-chain, i.e. an infinite set A ⊂ C such that ¬R(a, b) for all
different a, b ∈ A.

The following lemma is well–known and easy to prove.

Lemma 3 Let E(x, y) be the intersection of a set R of definable reflexive and
symmetric relations on C and D be the intersection of a set P of definable
subclasses of C. We assume R and P to be closed under finite intersections.

• E(x, y) is an equivalence relation iff for each R ∈ R there is an S ∈ R
such that S2 ⊂ R.

• Assume E(x, y) is an equivalence relation. Then E(x, y) is bounded on D
iff each R ∈ R is thick on some element P of P.

To prove Theorem 2 we fix a type–definable class D and a bounded type–
definable equivalence relation on D. Extending by equality on C \D we see that
this relation has the form E ∩ (D×D) for a type–definable equivalence relation
E.

We write E as the intersection of a set R of definable reflexive and symmetric
relations and D as the intersection of definable classes from P. We can assume
that both R an P are closed under finite intersections. Fix a relation R ∈ R.
We will find a P0 ∈ P and a sequence S0, S1, . . . of definable symmetric and
reflexive relations with the following properties:

(1) Sn ∩ (P0 × C) ⊂ R

(2) S2
n+1 ⊂ Sn

(3) S2
n is thick.

The intersection of the Sn is then a bounded type–definable equivalence relation
which refines R on D. This shows KP ∩ (D× D) ⊂ R and proves Theorem 2.

Lemma There is a P ∈ P such that for all x ∈ P there is a y ∈ D such that
R(x, y).

Proof: Assume not. Then every P ∈ P contains an x which is not R–related
to any element of D. By compactness there must be a subset P ′ of P which
belongs to P and does not contain elements R–related to x. We start with a
set P0 ∈ P on which R is thick. Then we choose x0 ∈ P0 and a subset P1

without elements R–related to x0. In P1 we choose x1 and P2 etc. The xi form
an infinite R–antichain, which is impossible.

By the last two lemmas we can find two sequences R0 ⊃ R1 ⊃ · · · and
P0 ⊃ P1 ⊃ · · · of elements of R and P with the following properties:

(a) R3
0 ⊂ R
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(b) R4
i+1 ⊂ Ri

(c) Ri is thick on Pi

(d) C |= ∀x ∈ Pi ∃y ∈ Pi+1 Ri+1(x, y)

Let x be an element of C. We define recursively

X0(x) = {z ∈ P0 | R0(x, z)}
Xi+1(x) = {z ∈ Pi+1 | Ri+1(y, z) for some y ∈ Xi(x)}

and the relations Sn as

Sn(x, x′) ⇐⇒ Xn(x) ∼Rn
Xn(x′),

where ∼Rn
is defined as follows:

Definition Let S be a reflexive and symmetric relation on a set C. For subsets
of X, X ′ of C define

X ∼S X ′ ⇐⇒ ∀x ∈ X ∃x′ ∈ X ′ S(x, x′) ∧ ∀x′ ∈ X ′ ∃x ∈ X S(x, x′).

∼S is a reflexive and symmetric relation on the power set of C.

Note that property (d) implies

Xi(x) ∼Ri+1 Xi+1(x).

Lemma 4 Let S and S′ be reflexive and symmetric relations on C.

• ∼SS′ is the composition of ∼S and ∼S′ .

• If S is thick on C the relation ∼S2 is thick on the power set of C.

Proof: The first claim is easy to see. Actually we will use only the trivial
inclusion ∼S∼S′ ⊂∼SS′ . For the second claim assume that S is thick. Choose
a maximal S–anti-chain A in C. Then every element of C is S–related to an
element of A. It follows that for every subset X of C

X ∼S XA,

where XA = {a ∈ A | S(x, a) for some x ∈ X}. This implies that an ∼S2–anti-
chain cannot have more elements than there are subsets of A.

Finally we show that the Sn have the properties (1)–(3).

(1) Assume Sn(x, x′). Let T denote the composition R1R2 · · ·Rn. Then

X0(x) ∼T Xn(x) ∼Rn Xn(x′) ∼T X0(x′),

which implies X0(x) ∼TRnT X0(x′). By property (b) we have TRn ⊂ R0 (we
use only R2

i+1 ⊂ Ri), whence X0(x) ∼R2
0

X0(x′). Now assume that in addition
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x ∈ P0. Then x ∈ X0(x) and we find an y ∈ X0(x′) such that R2
0(x, y). Since

R0(x′, y) we can conclude that R3
0(x, x′). Whence R(x, x′) by (a).

(2) If S2
n+1(x, x′′) there is an element x′ such that Sn+1(x, x′) and Sn+1(x′, x′′).

We have

Xn(x) ∼Rn+1 Xn+1(x) ∼Rn+1 Xn+1(x′) ∼Rn+1 Xn+1(x′′) ∼Rn+1 Xn(x′′).

This implies Xn(x) ∼Rn
Xn(x′′) by property (b).

(3) By property (c) and the last lemma the relation ∼R2
n

is thick on the power
set of Pn. This implies immediately the thickness of Sn.

Note added in June 2000
The theorem appeared already in Theorem 4.18 in Hyperimaginairies and auto-
morphism groups by D.Lascar and A.Pillay. The proof given there is, if one cir-
cumvents the surrounding theory, the following: Let A be the set of all bounded
hyperimaginaries a/E. Define the equivalence relation LP by

LP ⇐⇒ tp(x/A) = tp(y/A).

LP is bounded and type–definable. Whence it is refined by KP. Now let E
be a type–definable equivalence relation on D. The classes of E are bounded
hyperimaginairies. Therefore elements of D which are LP–equivalent are also
E equivalent. It follows that LP and therefore KP refines E on D. In fact
LP = KP.

That LP is type–definable is a basic observation: Let a/E be a hyperimagi-
nary. Then x and y have the same type over a/E iff

∃a′ E(a, a′) ∧ tp(x, a) = tp(y, a′).

Mathematisches Institut Freiburg, Germany

4


