A note on bounded hyperimaginaries

Martin Ziegler

June 13, 2000

The purpose of this note is to prove the following:

Theorem 1 Every bounded hyperimaginary is a class of a bounded type-definable equivalence relation.

Let \mathbb{C} be a big saturated model. An equivalence relation E between tuples of elements of \mathbb{C} is *type-definable* if it is defined by a set of formulas without parameters. The tuples may be infinite, but their length should be smaller than the size of \mathbb{C} . E is *bounded* if it has few classes compared with the size of \mathbb{C} . Bounded type-definable equivalence relations on a type-definable subclass of \mathbb{C} are defined similarly.

A class of a type–definable equivalence relation is a *hyperimaginary*. A hyperimaginary is *bounded* if it has few conjugates under automorphisms of \mathbb{C} . Of course all classes of a bounded type–definable equivalence relation are bounded hyperimaginaries. By the proposed theorem all bounded hyperimaginaries occur in this way.

Let KP denote the finest bounded type–definable equivalence relation¹. We will prove Theorem 1 in the following equivalent form:

Theorem 2 Let \mathbb{D} a type-definable subclass of \mathbb{C} . Then $\mathrm{KP} \cap (\mathbb{D} \times \mathbb{D})$ is the finest bounded type-definable equivalence relation on \mathbb{D} .

To see that this implies Theorem 1 consider a bounded hyperimaginary Ea. The union \mathbb{D} of all conjugates of Ea is type–definable and $E \cap (\mathbb{D} \times \mathbb{D})$ is a bounded type–definable equivalence relation on \mathbb{D} . Since KP refines E on \mathbb{D} and since \mathbb{D} is a union of KP–classes

$$F = \mathrm{KP} \cup (E \cap (\mathbb{D} \times \mathbb{D}))$$

defines an equivalence relation, which is bounded, type–definable and satisfies Ea = Fa.

 $^{^1{\}rm KP}$ depends of course on the length of the tuples under consideration. To ease notation we will assume all tuples to be of length 1.

Definition A reflexive and symmetric relation R on a set C is thick if there is no infinite R-anti-chain, i.e. an infinite set $A \subset C$ such that $\neg R(a, b)$ for all different $a, b \in A$.

The following lemma is well-known and easy to prove.

Lemma 3 Let E(x, y) be the intersection of a set \mathfrak{R} of definable reflexive and symmetric relations on \mathbb{C} and \mathbb{D} be the intersection of a set \mathfrak{P} of definable subclasses of \mathbb{C} . We assume \mathfrak{R} and \mathfrak{P} to be closed under finite intersections.

- E(x,y) is an equivalence relation iff for each $R \in \mathfrak{R}$ there is an $S \in \mathfrak{R}$ such that $S^2 \subset R$.
- Assume E(x, y) is an equivalence relation. Then E(x, y) is bounded on \mathbb{D} iff each $R \in \mathfrak{R}$ is thick on some element P of \mathfrak{P} .

To prove Theorem 2 we fix a type–definable class \mathbb{D} and a bounded type– definable equivalence relation on \mathbb{D} . Extending by equality on $\mathbb{C} \setminus \mathbb{D}$ we see that this relation has the form $E \cap (\mathbb{D} \times \mathbb{D})$ for a type–definable equivalence relation E.

We write E as the intersection of a set \mathfrak{R} of definable reflexive and symmetric relations and \mathbb{D} as the intersection of definable classes from \mathfrak{P} . We can assume that both \mathfrak{R} an \mathfrak{P} are closed under finite intersections. Fix a relation $R \in \mathfrak{R}$. We will find a $P_0 \in \mathfrak{P}$ and a sequence S_0, S_1, \ldots of definable symmetric and reflexive relations with the following properties:

- (1) $S_n \cap (P_0 \times \mathbb{C}) \subset R$
- (2) $S_{n+1}^2 \subset S_n$
- (3) S_n^2 is thick.

The intersection of the S_n is then a bounded type–definable equivalence relation which refines R on \mathbb{D} . This shows $\text{KP} \cap (\mathbb{D} \times \mathbb{D}) \subset R$ and proves Theorem 2.

Lemma There is a $P \in \mathfrak{P}$ such that for all $x \in P$ there is a $y \in \mathbb{D}$ such that R(x, y).

Proof: Assume not. Then every $P \in \mathfrak{P}$ contains an x which is not R-related to any element of \mathbb{D} . By compactness there must be a subset P' of P which belongs to \mathfrak{P} and does not contain elements R-related to x. We start with a set $P_0 \in \mathfrak{P}$ on which R is thick. Then we choose $x_0 \in P_0$ and a subset P_1 without elements R-related to x_0 . In P_1 we choose x_1 and P_2 etc. The x_i form an infinite R-antichain, which is impossible.

By the last two lemmas we can find two sequences $R_0 \supset R_1 \supset \cdots$ and $P_0 \supset P_1 \supset \cdots$ of elements of \mathfrak{R} and \mathfrak{P} with the following properties:

(a) $R_0^3 \subset R$

- (b) $R_{i+1}^4 \subset R_i$
- (c) R_i is thick on P_i
- (d) $\mathbb{C} \models \forall x \in P_i \exists y \in P_{i+1} R_{i+1}(x, y)$

Let x be an element of \mathbb{C} . We define recursively

$$X_0(x) = \{ z \in P_0 \mid R_0(x, z) \}$$

$$X_{i+1}(x) = \{ z \in P_{i+1} \mid R_{i+1}(y, z) \text{ for some } y \in X_i(x) \}$$

and the relations S_n as

$$S_n(x, x') \iff X_n(x) \sim_{R_n} X_n(x'),$$

where \sim_{R_n} is defined as follows:

Definition Let S be a reflexive and symmetric relation on a set C. For subsets of X, X' of C define

$$X \sim_S X' \Longleftrightarrow \forall x \in X \ \exists x' \in X' \ S(x, x') \land \ \forall x' \in X' \ \exists x \in X \ S(x, x').$$

 \sim_S is a reflexive and symmetric relation on the power set of C.

Note that property (d) implies

$$X_i(x) \sim_{R_{i+1}} X_{i+1}(x).$$

Lemma 4 Let S and S' be reflexive and symmetric relations on C.

- $\sim_{SS'}$ is the composition of \sim_S and $\sim_{S'}$.
- If S is thick on C the relation \sim_{S^2} is thick on the power set of C.

Proof: The first claim is easy to see. Actually we will use only the trivial inclusion $\sim_S \sim_{S'} \subset \sim_{SS'}$. For the second claim assume that S is thick. Choose a maximal S-anti-chain A in C. Then every element of C is S-related to an element of A. It follows that for every subset X of C

$$X \sim_S X_A,$$

where $X_A = \{a \in A \mid S(x, a) \text{ for some } x \in X\}$. This implies that an \sim_{S^2} -antichain cannot have more elements than there are subsets of A.

Finally we show that the S_n have the properties (1)–(3).

(1) Assume $S_n(x, x')$. Let T denote the composition $R_1 R_2 \cdots R_n$. Then

$$X_0(x) \sim_T X_n(x) \sim_{R_n} X_n(x') \sim_T X_0(x'),$$

which implies $X_0(x) \sim_{TR_nT} X_0(x')$. By property (b) we have $TR_n \subset R_0$ (we use only $R_{i+1}^2 \subset R_i$), whence $X_0(x) \sim_{R_0^2} X_0(x')$. Now assume that in addition

 $x \in P_0$. Then $x \in X_0(x)$ and we find an $y \in X_0(x')$ such that $R_0^2(x, y)$. Since $R_0(x', y)$ we can conclude that $R_0^3(x, x')$. Whence R(x, x') by (a).

(2) If $S_{n+1}^2(x, x'')$ there is an element x' such that $S_{n+1}(x, x')$ and $S_{n+1}(x', x'')$. We have

$$X_n(x) \sim_{R_{n+1}} X_{n+1}(x) \sim_{R_{n+1}} X_{n+1}(x') \sim_{R_{n+1}} X_{n+1}(x'') \sim_{R_{n+1}} X_n(x'').$$

This implies $X_n(x) \sim_{R_n} X_n(x'')$ by property (b).

(3) By property (c) and the last lemma the relation $\sim_{R_n^2}$ is thick on the power set of P_n . This implies immediately the thickness of S_n .

Note added in June 2000

The theorem appeared already in Theorem 4.18 in *Hyperimaginairies and auto*morphism groups by D.Lascar and A.Pillay. The proof given there is, if one circumvents the surrounding theory, the following: Let A be the set of all bounded hyperimaginaries a/E. Define the equivalence relation LP by

$$LP \iff tp(x/A) = tp(y/A).$$

LP is bounded and type-definable. Whence it is refined by KP. Now let E be a type-definable equivalence relation on \mathbb{D} . The classes of E are bounded hyperimaginairies. Therefore elements of \mathbb{D} which are LP-equivalent are also E equivalent. It follows that LP and therefore KP refines E on \mathbb{D} . In fact LP = KP.

That LP is type–definable is a basic observation: Let a/E be a hyperimaginary. Then x and y have the same type over a/E iff

$$\exists a' \ E(a,a') \land \operatorname{tp}(x,a) = \operatorname{tp}(y,a').$$

MATHEMATISCHES INSTITUT FREIBURG, GERMANY