
NOETHERIAN THEORIES

AMADOR MARTIN-PIZARRO AND MARTIN ZIEGLER

Abstract. A �rst-order theory is Noetherian with respect to the collection
of formulae F if every de�nable set is a Boolean combination of instances of
formulae in F and the topology whose subbasis of closed sets is the collection of
instances of arbitrary formulae in F is Noetherian. We show the Noetherianity
of the theory of proper pairs of algebraically closed �elds in any characteristic
with respect to the family of tame formulae as introduced in [11]. Thus, we
answer a question which was left open there.

1. Introduction

Consider a �rst-order theory T and a collection of formulae F closed under �nite
conjunctions. The family F is Noetherian if in every model M of T the family
of instances of arbitrary formulae in F has the descending chain condition. The
theory T is Noetherian with respect to the Noetherian collection of formulae F if
every formula φ(x; y) (in a �xed partition of the variables into tuples x and y) is
equivalent modulo T to a Boolean combination of formulae ψ(x; y) in F (in the
same partition).

Quanti�er elimination implies that the theory of algebraically closed �elds as
well as the theory of di�erentially closed �elds of characteristic 0 are Noetherian,
since both the Zariski and the Kolchin topology are Noetherian. Every di�eren-
tially closed �eld (in characteristic 0) expands the structure of a proper pair of
algebraically closed �elds, where the distinguished algebraically closed sub�eld is
given by the constant elements whose derivative is 0.

In [5, 11] it was shown that proper pairs of algebraically closed �elds of charac-
teristic 0 are Noetherian. This follows from the fact that de�nable sets are Boolean
combination of certain de�nable sets which happen to be Kolchin-closed in the cor-
responding expansion as a di�erentially closed �eld. However, this approach cannot
be carried over to the case of positive characteristic since the Kolchin topology for
di�erentially closed �elds of positive characteristic is not Noetherian.

A weakening of Noetherianity is equationality, in which we only require that each
partitioned formula is a boolean combination of equations (in the same partition). A
partitioned formula φ(x; y) is an equation if in every model of T the family of �nite
intersections of instances φ(x, a) has the descending chain condition. The authors
showed in [11] that the theory of pairs of algebraically closed �elds is equational.

Date: August 2, 2023.
2020 Mathematics Subject Classi�cation. 03C45.
Key words and phrases. Model Theory, Noetherianity, Equationality, Pairs of �elds.
Research partially supported by the program PID2020-116773GB-I00. Additionally, the �rst

author conducted research supported by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) - Project number 431667816, part of the ANR-DFG, program GeoMod.

1



2 AMADOR MARTIN-PIZARRO AND MARTIN ZIEGLER

In this paper, we will prove that the family of equations exhibited in [11] for the
theory of proper pairs of algebraically closed �elds is in fact Noetherian, so every
proper pair of algebraically closed �elds is Noetherian, regardless of the character-
istic. (cf. Section 9 of the extended version of [11])

Main Theorem. (Corollary 4.2) The theory of proper pairs of algebraically closed
�elds is Noetherian.

The structure of the papers is as follows: In Section 2, we explore the notion of
Noetherianity. It will follow from Corollary 2.14 that Noetherianity is equivalent to
the fact that every type contains a minimal instance of a formula in F . Moreover,
we relate Morley rank to the foundational rank relative to F and show that equality
holds under a mild condition, called Noetherian isolation. Section 3 contains a short
overview of the main properties of the theory of proper pairs of algebraically closed
�elds, which will be used in Section 4 in order to give a proof of the Noetherianity
of this theory. In Section 5 we show that the theory of proper pairs of algebraically
closed �elds has Noetherian isolation using Poizat's description of Morley and Las-
car ranks. Finally, in Section 6, we use the techniques of Hilbert polynomials and
schemes (in a self-contained presentation) in order to explicitly exhibit the minimal
tame formula of a type.

2. Noetherianity and chain conditions

De�nition 2.1. A collection C of subsets of a set X is Noetherian if it satis�es the
following two conditions:

• The collection C is closed under �nite intersections and contains the set X
itself.

• The collection C has the descending chain condition (DCC): every descend-
ing chain

C0 ⊃ C1 ⊃ · · · ⊃ Cn ⊃ · · · ,
with Cn in C for n in N, eventually stabilises, that is, there is some n0 such
that Cn = Cn+1 for all n ≥ n0.

It is easy to see that C is has DCC if and only if every non-empty subset of C
has a minimal element (with respect to set-theoretic inclusion).

Lemma 2.2. Consider a collection C of subsets of a set X such that C contains X
and is closed under �nite intersections. Then the following are equivalent;

(a) The collection C is Noetherian.
(b) For every ultra�lter U on X, the intersection U ∩ C has a minimal element D.
(c) Every ultra�lter U on X contains a set Y (possibly not in C) which is contained

in every element of U ∩ C.

Since U ∩ C is closed under �nite intersections, the subset D in (b) is uniquely
determined. We refer to D as the minimal element of U with respect to C.

Proof. The implications (a) ⇒ (b) and (b) ⇒ (c) are immediate. For the implication
(c) ⇒ (a), consider a strictly decreasing chain

C0 ⊋ C1 ⊋ · · · ⊋ Cn ⊋ · · · ,
of elements of C. Set Z =

⋂
n∈N

Cn and notice that the collection {Cn\Z}n∈N has the

�nite intersection property. Thus, there is some ultra�lter U on X containing every
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Cn \ Z. Assume that U contains an element Y as in (c). Since U ∩ C has empty
intersection, we deduce that Y = ∅ which gives the desired contradiction. □

De�nition 2.3. An element C of C is irreducible if it is non-empty and cannot be
written as a �nite union C = C1 ∪ · · · ∪ Cn, with each Ck ⊊ C in C. Equivalently,
whenever C is contained in some �nite union

⋃m
i=1Di, with Di in C, then C ⊂ Di

for some 1 ≤ i ≤ m.

Remark 2.4. If C is Noetherian, it follows immediately from König's Lemma that
every C in C can be written as an irredundant union of �nitely many irreducible
subsets C1, . . . , Cn. The decomposition C = C1∪· · ·∪Cn is irredundant is Ci ̸⊂ Cj

for i ̸= j. The irreducible subsets appearing in an irredundant expression of C are
unique up to permutation. We refer to them as the irreducible components of C.

A straightforward application of Lemma 2.2 yields the following result, which
justi�es our choice of terminology.

Fact 2.5. ([14, Lemma 2.7]) If the collection C of subsets of X is Noetherian, then
so is the family C′ of �nite unions of elements of C.

A topology is Noetherian if the family of closed sets is Noetherian. If C is Noe-
therian, it follows that C′ consists of the closed sets of a Noetherian topology TC on
X.

De�nition 2.6. Given a Noetherian collection C of subsets of X, we assign an
ordinal rank RkC(Y ) to every subset Y of X as follows. For irreducible sets C it is
the foundational rank, that is,

• RkC(C) ≥ 0 always holds;
• RkC(C) ≥ α+ 1 if and only if RkC(D) ≥ α for some irreducible D ⊊ C;
• RkC(C) ≥ α with α limit if and only if RkC(C) ≥ β for every β < α.

We set RkC(C) the largest α with RkC(C) ≥ α. (Such an ordinal always exist by
Noetherianity of the family). The rank of a closed set is the largest rank of its
irreducible components, whilst RkC(∅) = −∞. Finally the rank of an arbitrary
subset Y is the rank of its closure Y with respect to the topology TC .

Remark 2.7. If A is closed in X with respect to TC , we have that
RkC(A) = max{RkC(C) | C ⊂ A irreducible }.

This follows from the fact that every irreducible subset of A is contained in an
irreducible component of A. Using the above equality, we deduce that

RkC(Y1 ∪ Y2) = max{RkC(Y1),RkC(Y2)}
for any subsets Y1 and Y2 of X. Now, if the subset Y of X is constructible, that
is, it is a Boolean combination of closed sets, write Y =

⋃
1≤i≤n Ci ∩ Oi for some

irreducible closed subsets Ci and open subsets Oi with Ci ∩Oi ̸= ∅. It follows that
that

RkC(Y ) = max
1≤i≤n

RkC(Ci),

since the closure of the Ci ∩Oi is Ci.

The following lemma will be used in the proof of 2.17.

Lemma 2.8. If Y is constructible and non-empty, then RkC(Y \ Y ) < RkC(Y ).
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Proof. Write Y =
⋃

1≤i≤n Ci ∩Oi as in Remark 2.7 and notice that

Y \ Y ⊂
⋃

1≤i≤n

Ci \Oi.

Since Ci \Oi is a proper closed subset of Ci, we have RkC(Ci \Oi) < RkC(Ci), and
conclude the desired inequality. □

De�nition 2.9. The degree of a closed subset A of X is the number degC(A) of
irreducible subsets of A which have the same rank of A. The degree of an arbitrary
subset of X is the degree of its closure.

The following observation follows from the fact that an irreducible subset of
Y 1 ∪ Y 2 is contained in Y 1 or in Y 2.

Lemma 2.10. If RkC(Y
1) > RkC(Y

2), then degC(Y
1 ∪ Y 2) = degC(Y

1). □

Note that the degree of a constructible set Y =
⋃

1≤i≤n Ci∩Oi equals the number
of di�erent Ci's of maximal rank. This yields the following result.

Lemma 2.11. Given two disjoint constructible subsets Y 1 and Y 2 of X of the
same rank, we have degC(Y1 ∪ Y2) = degC(Y

1) + degC(Y
2).

Proof. For j in {1, 2}, write Y j =
⋃

1≤i≤ni
Cj

i ∩ Oj
i for some irreducible closed

subsets Cj
i and open subsets Oj

i with Cj
i ∩ Oj

i ̸= ∅. We need only show that
C1

i ̸= C2
k for all i, k. Assume otherwise. Since C = C1

i = C2
k is not the union of the

two closed proper subsets C \ O1
i and C \ O2

k, it follows that C ∩ O1
i and C ∩ O2

k

cannot be disjoint, which gives the desired contradiction. □

Fix now a �rst-order theory T in a language L.

Notation. Consider a collection of partitioned formulae F closed under renaming
of variables, and such that if φ(x, y) and ψ(x, y) belong to F , so does the conjunction
φ(x, y1)∧ψ(x, y2). For simplicity, we will always assume that the tautologically true
sentence ⊤ belongs to F . We allow dummy free variables, so ⊤ may be considered
as a formula in any partitioned set of variables.

De�nition 2.12. The collection F is Noetherian if in every model M of T and for
every length n = |x|, the family of instances

C = {φ(M,a) | φ(x, y) ∈ F & a ∈M}
is Noetherian. We call a formula ψ(x, a) closed if φ(M,a) belongs to C.

If the theory T is complete, it su�ces to check that the family of instances with
parameters in some ℵ0-saturated model has the descending chain condition.

Remark 2.13. Recall that a formula φ(x, y) is an equation if the collection of �nite
intersections of instances of φ(x, y) has the DCC, or equivalently, if the collection of
all conjunctions

∧n
i=1 φ(x, yi) is Noetherian. Every formula in a Noetherian family

F is an equation.

If M is a model of T , every ultra�lter on M |x| determines a type p(x) over M ,
and thus over any subset A of M . Hence, we deduce from Lemma 2.2 and the
observation after De�nition 2.12 the following result.

Corollary 2.14. The following conditions are equivalent:
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(a) The collection F is Noetherian.
(b) Every type p(x) over a model M of T contains a minimal formula φ(x, a) with

respect to F , that is, the formula φ(x, y) belongs to F and

ψ(x, b) belongs to p if and only if φ(M,a) ⊂ ψ(M, b)

for every ψ(x, z) in F and every tuple b in M .
(c) Every type p(x) over a model M of T contains an LM -formula θ(x, a) such that

ψ(x, b) belongs to p if and only if θ(M,a) ⊂ ψ(M, b)

for every formula ψ(x, y) in F and every tuple b in M .

□

Since every two minimal formulae in the type p over M are equivalent, we will
say that φ(x, a) is the minimal formula of p (with respect to the Noetherian family
F). In condition (c), we do not require that θ(x, y) belongs to F , so a type may
admit two non-equivalent formulae θ(x, a) and θ′(x, a′) as in (c).

Remark 2.15. If F is Noetherian, it is easy to see that every type p(x) over a
subset A of a model M contains a closed formula ψ(x, a), which is minimal among
all closed formulae in p. We will refer to ψ(x, a) as the minimal formula of p.

If A is an arbitrary subset of parameters and not necessarily an elementary
substructure of M , it need not be the case that the minimal formula of p is of the
form φ(x, a) for some φ(x, y) ∈ F and a in A. The easiest example is the theory
of a 2-element set with F the family generated by (x

.
= y). For those readers who

do not feel at ease with �nite models (which is the case of the the �rst author),
we provide a more standard example: Consider the theory of a structure with two
in�nite equivalence classes modulo a de�nable equivalence relation E(x, y) and set
F the family generated by {(x .

= y), E(x, y)}. This family is clearly Noetherian by
Corollary 2.14, since there are only �nitely many atomic formulae over any subset
of parameters. If a is any element, the closed formula ¬E(x, a) is clearly invariant
over A = {a}, yet it is not an instance over A of an F-formula.

We will see in Proposition 3.11 that minimal closed formulae for the theory of
proper pairs of algebraically closed �elds are indeed equivalent to instances of tame
formulae with the same parameters.

Using De�nition 2.3, we can de�ne whether a closed formula ψ(x, a) in the model
M is irreducible. More generally, given a subset A of some model M of T , we say
that a closed formula with parameters in A is irreducible over A if it cannot be
written as a proper union of a �nite number of closed formulas with parameters in
A. If A =M , we will simply say that ψ(x, a) is irreducible.

Remark 2.16. Let A be a subset of a model M of T . The minimal formula of a
type over A is irreducible over A.

A closed formula with parameters in M is irreducible over M if and only it is
irreducible over any elementary extension of M . Moreover, if θ(x, a) is any formula
with parameters in M , then a closed formula φ(x, b) equals the topological closure

θ(x, a) of θ(x, a) in M if and only φ(x, b) is the closure of θ(x, a) in any elementary
extension ofM . It follows that φ(x, b) can actually be de�ned using the same tuple
a of parameters.

Notation. Using De�nition 2.6, given a formula θ(x, a) with parameters in a model
M of T , we denote by RF θ(x, a) the RkC-rank of the set θ(M,a) with respect to
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the Noetherian family C = {φ(N, b) | φ(x, y) ∈ F & b ∈ N}, where N is some ℵ0-
saturated elementary extension of M . We de�ne the degree degF θ(x, a) similarly.
The rank RF (p) of a type is the smallest rank of a formula in p. The degree degF (p)
is the smallest degree of a formula in p of rank RF (p).

Since the closure of a formula has the same rank and degree, it is easy to see
that the rank and the degree of a type are exactly the rank and the degree of its
minimal formula. Whence, the degree of a a type p over a model is always 1, since
its minimal formula is irreducible.

Lemma 2.17. Given a Noetherian family F , let θ(x, a) be a consistent formula
with parameters in a subset A of a model M of T . Then

RF θ(x, a) = max{RF (p) | the type p over A contains θ(x, a)}.

If M is ℵ0-saturated, then degF θ(x, a) is the number of types p over M containing
θ(x, a) with RF (p) = RF θ(x, a).

Proof. The �rst equality follows easily from Remark 2.7: If α is the rank of θ(x, a),
the set Σ(x) of all formulas over A of rank < α together with θ(x, a) is consistent.
Any type over A which extends Σ(x) has rank α.

For the second assertion, note that Lemma 2.8 implies that a type of rank
RF θ(x, a) contains θ(x, a) if and only it contains the topological closure θ(x, a).

Now, if M is ℵ0-saturated, the types over M containing θ(x, a) correspond exactly

to the irreducible components of θ(x, a). □

De�nition 2.18. A �rst-order theory T is Noetherian with respect to the Noe-
therian family of formulae F if every formula ψ(x, y) is equivalent modulo T to a
Boolean combination of formulae in F with respect to the same partition of the
variables.

Remark 2.19. Recall that a theory T is equational if every partitioned formula is
equivalent to a boolean combination of equations. We conclude from Remark 2.13
that Noetherian theories are equational.

Question. As pointed out in [11, p. 830], a theory is equational if and only if every
completion is. We do not know whether the same holds for Noetherianity.

We will now explore some of the model-theoretic properties of Noetherian the-
ories and determine their stability spectrum. For that, we will adapt the previous
notions of rank and degree to formulae in terms of their underlying de�nable set.
It is easy to see that these de�nitions do not depend on the choice of the model. If
no parameters occur in θ(x), we still need to choose an ambient model M .

We begin with an auxiliary Lemma.

Lemma 2.20. Every formula θ(x, a) in a Noetherian theory is a Boolean combi-
nation of closed formulas with the same tuple a of parameters.

Proof. We may assume that θ(x, a) is consistent. Let φ(x, a) denote the topological
closure of θ(x, a). By Lemma 2.8, the rank of ρ(x, a) = φ(x, a)∧¬θ(x, a) is strictly
smaller than the rank of θ(x, a). Now, the formula θ(x, a) is equivalent to φ(x, a)∧
¬ρ(x, a), so we conclude our result by induction on the rank of θ(x, a). □

Lemma 2.21. Noetherian theories are totally transcendental.
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Proof. Assume for a contradiction that in some modelM of T there is a binary tree
of consistent formulae θs(x, as), with as in M for s in <ω2. Since T is Noetherian,
each de�nable set θs(x, as) is constructible. Choose thus an instance θs(x, as) in
the tree whose RF -rank and degree are least possible in the lexicographic order.
By minimality of the rank, both θs⌢0(x, as⌢0) and θs⌢1(x, as⌢1) must have the
same RF -rank as θs(x, as). Now, the instances θs⌢0(x, as⌢0) and θs⌢1(x, as⌢1)
are disjoint, so we deduce from Lemma 2.11 that the degree of θs(x, as) is strictly
larger than degC(θs⌢0(x, as⌢0)), which gives the desired contradiction. □

It follows that Noetherian theories are κ-stable for every κ ≥ |L|. We will provide
a direct proof of this in terms of the natural correspondence between types and their
minimal formulae.

Proposition 2.22. Suppose that the �rst-order theory T is Noetherian with respect
to F . For every subset A of a model M of T , there is bijection between types over A
and (equivalence classes with respect to logical equivalence of) irreducible formulas
over A. In particular, every Noetherian theory is κ-stable for every κ ≥ |L|.

Proof. By Remark 2.15, given a type p(x) over A, we denote its minimal formula
by φp(x, a), which is unique up to equivalence and irreducible over A.

Given now a closed φ(x, a) with parameters from A, the collection

Σφ = {φ(x, a)} ∪ {¬ψ(x, a′) | ψ(x, a′) closed, a′ in A and φ(M,a) ̸⊂ ψ(M,a′)}
is consistent exactly if φ(x, a) is irreducible over A. In that case, it admits a
unique completion pφ(x), since by the lemma all A-de�nable subsets are Boolean
combinations of A�de�nable closed subsets.

To conclude, we need only observe that φ(x, a) is the minimal formula of a type
p over A if and only if Σφ ⊂ p. □

It is not hard to see that the type p(x) can be recovered from its minimal formula
φ(x, a) as the set of all formula θ(x, a′) over A such φ(x, a) is the topological closure
of φ(x, a) ∧ θ(x, a′).

Remark 2.23. The converses of Remark 2.19 and Proposition 2.22 need not hold
in general. We are thankful to Martin Hils for immediately providing an easy
counterexample: In the relational language given by unary predicates {Pn}n∈N,
consider the theory stating that Pn+1 ⊊ Pn for every n in N. This countable theory
is clearly equational and ω-stable, but not Noetherian.

Lemma 2.24. Let T be Noetherian and consider a type p over a subset A of a
model M . The minimal formula of p isolates it among all types over A of rank at
least RF (p).

Proof. Let φ(x, a) be the minimal formula of p. Choose another type q over A
containing φ(x, a). There is a formula θ(x, b) in p which implies φ(x, a) and does
not belong to q. Now, both φ(x, a) and θ(x, b) have the same rank and degree as
p, so by Lemma 2.11 the rank of φ ∧ ¬θ(x, b), and therefore also the rank of q, is
strictly smaller than RF (p), as desired. □

Total transcendence means that Morley rank is ordinal-valued. For the rest of
the section, we will compare Morley rank to the foundational rank RF and show
equality of these ranks under some mild assumption (see De�nition 2.27) on the
Noetherian theory T .
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Corollary 2.25. Assume that T is Noetherian with respect to F . Then, for ev-
ery formula θ(x, a) with parameters in a model of T , we have that RM θ(x, a) ≤
RF θ(x, a).

Note that both ranks are computed in reference to the ambient model under
consideration.

Proof. By Lemma 2.17 and Corollary 2.25, it is enough to show that RM(p) ≤
RF (p) for every type over an ℵ0-saturated model M . Let α = RF (p) and φ(x, a)
the minimal formula of p. Then RF (q) < α for all types q ̸= p containing φ(x, a).
By induction on α, we deduce that RM(q) < α for all such q. Since M is ℵ0-
saturated, it follows that RM(p) ≤ α. □

Remark 2.26. Even for Noetherian theories of �nite Morley rank, we need not
always have equality between Morley rank and the foundational rank RF . Indeed,
consider the language L consisting of a single unary predicate P and the theory T
whose models are exactly the L-structures where P denotes an in�nite co-in�nite
subset. The theory T is Noetherian with respect to the class F consisting of �nite
conjunctions of atomic formulas. However, the irreducible x

.
= x has Morley rank

1 (and Morley degree 2), yet RF -rank 2.

One of the reasons why equality of both ranks does not hold in the above example
is the fact that the unique non-algebraic 1-type over an ℵ0-saturated model M
determined by the formula ¬P (x) contains no irreducible formula isolating it among
all types over M of Morley rank at least 1. We will therefore introduce the notion
of Noetherian isolation to ensure equality in Corollary 2.25.

De�nition 2.27. The Noetherian theory T with respect to F admits Noetherian
isolation if every type p over a set A contains a closed φ(x, a) such that φ(x, a)
isolates p among all types over A of Morley rank at least RM(p).

Clearly T admits Noetherian isolation if and only if the minimal formula of p isolates
it among all types of Morley rank at least RM(p).

Theorem 2.28. Let T be a Noetherian theory T . The the following are equivalent.

(a) The theory T has Noetherian isolation.
(b) For every formula θ(x, a) with parameters in a model of T , we have that

RM θ(x, a) = RF θ(x, a).
(c) For every consistent formula θ(x, a) with parameters in some model T , we have

that RM
(
θ(x, a) ∧ ¬θ(x, a)

)
< RM θ(x, a)

Proof. For (a)⇒(b): By Lemma 2.17 and Corollary 2.25, it is enough to show
that RM(p) = RF (p) for all types over an ℵ0-saturated model M . We proceed by
induction on α = RM(p). Let φ(x, a) be the minimal formula of p. By assumption,
all types q ̸= p containing φ(x, a) have Morley rank strictly smaller than α, so
RF (q) < α by induction. It follows that RF ψ(x, b) < α for all irreducible proper
subformulas of φ(x, a), and thus RF φ(x, a) ≤ α, as desired.

The implication (b)⇒(c) follows from Lemma 2.8, so we need only show (c)⇒(a).
Consider a type p(x) over A and let θ(x, a) in p isolate it among types over A of

Morley rank at least RM(p). Since RM
(
θ(x, a) ∧ ¬θ(x, a)

)
< RM θ(x, a), we have

that θ(x, a) is a closed formula which also isolates p among types over A of Morley
rank at least RM(p). Hence, the theory T has Noetherian isolation, as desired. □
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Notice that the above proof yields immediately the following corollary.

Corollary 2.29. Suppose that every type over a model M of T is isolated by its
minimal formula among all types over M of Morley rank at least RM(p). Then T
has Noetherian isolation. □

Remark 2.30. It is easy to see that a theory has Noetherian isolation if Morley
rank and the foundational rank agree on closed formulas.

Corollary 2.31. If the Noetherian theory T has Noetherian isolation, then Morley
degree of a formula θ(x, a) equals degF θ(x, a).

Proof. By Lemma 2.8 and Theorem 2.28 part (c), we may assume that θ(x, a) is a
closed formula. Furthermore, we may also assume that our ambient modelM is ℵ0-
saturated. Now, Morley degree of θ(x, a) is the number of types over M containing
θ(x, a) of Morley rank RM θ(x, a). Since Morley rank and the foundational rank are
the same, we have that Morley degree is exactly degF θ(x, a), by Lemma 2.17. □

Corollary 2.32. If the Noetherian theory T has Noetherian isolation, then for
every type p over a set A with minimal formula φ(x, a) we have that RM(p) =
RF φ(x, a) and its Morley degree is degF φ(x, a). □

We will conclude this section with an easy observation regarding imaginaries in
Noetherian theories (cf. [13, Corollary 2.8]).

Remark 2.33. Given a complete Noetherian theory T with respect to the Noe-
therian family F of formulae, the theory T has weak elimination of imaginaries
after adding sorts for the canonical parameter of instances of formula in F .

Moreover, if F is closed under �nite disjunctions, then every imaginary is inter-
de�nable with the canonical parameter of some instance of a formula in F .

Proof. Consider an ∅-de�nable equivalence relation E and an equivalence class
E(x, a). By Remark 2.4, the closure of the constructible subset E(x, a) can be
written as an irredundant union of its irreducible components C1, . . . , Cn. Write
each Ci as Ci = φi(x, bi) for some formula φi in F . Clearly, the tuple of canon-
ical parameters η̄ = (⌜φ1(x, b1) ⌝, . . . , ⌜φn(x, bn) ⌝) is algebraic over the canonical
parameter of the closure, and thus algebraic over ⌜E(x, a) ⌝.

Now, the canonical parameter of the closure is clearly de�nable over the tuple η̄,
so we need only show that ⌜E(x, a) ⌝ is de�nable over the canonical parameter of
its closure. Otherwise, there would be an automorphism σ such that constructible
set E(x, σ(a)) di�ers (and thus is disjoint) from E(x, a), but they have the same
closure, which is not possible since E(x, a) and E(x, σ(a)) are constructible.

If F is now closed under �nite disjunctions, then the closure of E(x, a) is given
by a single instance φ(x, c) of a formula φ(x, y) in F , so ⌜E(x, a) ⌝ and ⌜φ(x, c) ⌝
are interde�nable, as desired. □

3. Proper pairs of algebraically closed fields

As mentioned in the introduction, we will show in Sections 4 and 6 that the
theory of proper pairs of algebraically closed �elds is Noetherian. Most of the
results mentioned here appear in [8, 15], unless explicitly stated.

A pair (K,E) of algebraically closed �elds is an extension E ⊂ K of algebraically
closed �elds. Every pair is a structure in the language LP = Lring ∪ {P} with
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E = P (K). If E = K, the pair is bi-interde�nable with the theory ACF of alge-
braically closed �elds, which is clearly Noetherian, since de�nable sets are Zariski
constructible.

Henceforth, we will restrict from now on our attention to proper pairs

(K,E) of algebraically closed �elds, so E ⊊ K.

We denote by ACFP the LP -theory of proper pairs of algebraically closed �elds,
which expands the incomplete Lring-theory ACF of algebraically closed �elds. We
will use the index P to refer to the theory ACFP. In particular, given a subset of pa-
rameters A of K, by dcl(A) and acl(A) we mean its de�nable and algebraic closures
in the pure �eld language, whereas dclP (A) or aclP (A) mean the corresponding
objects in the structure of the pair (K,E). In particular, the independence symbol
|⌣ refers to algebraic independence in the reduct ACF.
As shown by Robinson [17], every completion of the theory ACFP is obtained

by �xing the characteristic. Each of these completions is ω-stable of Morley rank
ω [16, p. 1659]. The induced structure on the proper sub�eld E agrees with its
structure as a pure �eld, so E has Morley rank 1. Over any subset of parameters A
of K, there is a unique type of Morley rank ω over A given by an element (inside
a su�ciently saturated pair) which is transcendental over the compositum �eld
E ·Quot(A), where Quot(A) denotes the sub�eld generated by A.

Delon [2] provided a de�nable expansion of the language LP for ACFP to have
quanti�er elimination. The suggested language is LD = LP ∪ {Indn, λin}1≤i≤n∈N,
where K |= Indn(a1, . . . , an) if and only if a1, . . . , an are E-linearly independent.
Each function λin takes values in E. If a1, . . . , an are E-linearly independent, but

a0, a1, . . . , an are not, its values are determined by a0 =
n∑

i=1

λin(a0; a1 . . . , an) ai.

Otherwise, the value λin(a0; a1 . . . , an) is zero.

Notation. From now on, given a set A of parameters, we will denote by λ(A) the
sub�eld of E generated by the values of the λ-functions applied to tuples of A.

Note that the sub�eld E ∩ k is always contained in λ(k), since an element a
belongs to E if and only if a = λ(a; 1).

Remark 3.1. For every sub�eld k of K, we have that λ(k) is the smallest sub�eld
F of E such that F · k and E are linearly disjoint over F . In particular,

λ(k) = λ(λ(k) · k).

Lemma 3.2. Let k ⊂ L be sub�elds of K. Then,

L |⌣
λ(k)·k

E ⇔ λ(k(L)) ⊂ acl
(
λ(k)

)
.

Proof. By Remark 3.1, we have λ(k) ·k |⌣λ(k)
E. Now, transitivity and monotonic-

ity of non-forking yield that

L |⌣
λ(k)·k

E ⇔ L |⌣
λ(k)

E.

The latter condition is equivalent to acl(λ(k)) · L |ld⌣ acl(λ(k))
E, which again by

Remark 3.1 is equivalent to λ(L) ⊂ acl(λ(k)). □
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De�nition 3.3. A sub�eld k of K is λ-closed if λ(k) is a sub�eld of k, or equiva-
lently, if k is linearly disjoint from E over the sub�eld E ∩ k, in which case E ∩ k
equals λ(k).

A straightforward appplication of Remark 3.1 and Lemma 3.2 to the sub�elds
k(e) ⊂ k(a, e) yields the following result:

Corollary 3.4. If k is λ-closed, then for all tuples a ∈ K and e ∈ E, we have

a |⌣
k(e)

E ⇔ λ(k(a)) ⊂ acl
(
λ(k)(e)

)
□

Fact 3.5. ([2, Théorème 1]) The fraction �eld of an LD-substructure is λ-closed.
The LP -type of a λ-closed �eld (seen as a long tuple with respect to some �xed
enumeration) is uniquely determined by its quanti�er-free LP -type, so the theory
ACFP has quanti�er elimination in the language LD.

Remark 3.6. Every LP -de�nably closed subset of a model (K,E) of ACFP is
λ-closed as a sub�eld of K. Moreover, if a sub�eld k is λ-closed, then its LP -
de�nable closure is its inseparable closure kins and its LP -algebraic closure is the
�eld algebraic closure kalg.

We now introduce (cf. [11, De�nition 6.3]) the collection of tame formulae, which
will be shown in Sections 4 and 6 to be Noetherian.

De�nition 3.7. Given a tuple x of variables, a tame formula on x is an LP -formula
of the form

∃ ζ ∈ P r

(
¬ ζ .

= 0 ∧
m∧
j=1

qj(x, ζ)
.
= 0

)
for some polynomials q1, . . . , qm in Z[X,Z], homogeneous in the variables Z.

Fact 3.8. ([11, Lemma 6.4, Corollaries 6.5 and 6.8, Proposition 7.3])

• Given polynomials q1, . . . , qm in Z[X,Y, Z] homogeneous in the variables Y
and Z separately, the LP -formula

∃ ξ ∈ P r ∃ ζ ∈ P s
(
¬ ξ .

= 0 ∧ ¬ ζ .
= 0 ∧

∧
k≤m

qk(x, ξ, ζ)
.
= 0

)
is equivalent in ACFP to a tame formula.

• The collection of tame formulae is, up to equivalence, closed under �nite
conjunctions and disjunctions.

• Every tame formula, in any partition of the variables, is an equation (cf.
Remark 2.13).

• Every LP -formula is equivalent modulo ACFP to a Boolean combination of
tame formulae, so ACFP is equational.

The fundamental reason why tame formulae are equations is due to the following
observation, which will be again relevant in order to show that ACFP is Noetherian:

Remark 3.9. Projective varieties are complete: Given a projective variety Z and
an algebraic variety X, the projection map X × Z → X is closed with respect to
the Zariski topology.
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By Fact 3.8, in order to show that ACFP is Noetherian, we need only show in
Sections 4 and 6 that the family of instances of tame formulae, which is already
closed under �nite intersections, has the DCC. For this, we need a couple of auxiliary
lemmata. The next result already appeared implicitly in [11, Lemma 7.2], so we
will not provide a proof thereof.

Lemma 3.10. Let k be a λ-closed sub�eld of K. For every instance φ(x, a) of a

tame formula φ with parameters in k, there exists a Zariski closed subset V of E|x|

de�ned over λ(k) such that for every e in E,

(K,E) |= φ(e, a) ⇐⇒ e ∈ V.

If the polynomials in φ are homogeneous in X, then so are the polynomials de�ning
V . □

We will �nish this section by showing (cf. Remark 2.15) that every closed formula
(as in De�nition 2.12 with F the family of tame formulae) over a subset A of
parameters is indeed equivalent to an instance of a tame formula with parameters
over A. This result resonates with [7, Proposition 2.9].

Proposition 3.11. An instance of a tame formula which is equivalent to an LP -
formula with parameters in A is equivalent to an instance of a tame formula with
parameters over A.

Proof. To render the presentation of the proof more structured, we will �rst prove
a couple of intermediate claims.

Claim 1. Every instance of a tame formula with parameters in dclP (A) is equiva-
lent to an instance of a tame formula over A.

Proof of Claim 1. By Remark 3.6, the de�nable closure dclP (A) is the inseparable
closure of the smallest λ-closed sub�eld containing A. Thus, the parameters from
dclP (A) are obtained from A using the ring operations, as well as inversion, extrac-
tion of pth-roots if the characteristic of K is the prime number p and applying the
λ-functions. The cases of the ring operations, inversion and extraction of pth-roots
are easy (for the distinguished algebraically closed sub�eld E is perfect), so we will
solely focus on the application of the λ-functions. For the sake of the presenta-
tion, assume that a0, . . . , an are elements of A with e1 = λ1n(a0; a1, . . . , an) ̸= 0 (so
a1, . . . , an are linearly independent over E). Consider now the instance

φ(x, a′, e1) = ∃ ζ ∈ P r

(
¬ ζ .

= 0 ∧
m∧
j=1

qj(x, a
′, e1, ζ)

.
= 0

)
of a tame formula, where a′ is a tuple in A containing a0, . . . , an. Let N be the
largest integer such that eN1 occurs non-trivially in some qj . Set now

ψ(x, a′) = ∃ ζ ∈ P r ∃ ξ ∈ Pn+1

(
¬ ζ .

= 0 ∧ ¬ ξ .
= 0 ∧

ξ0a0 =

n∑
i=1

ξiai ∧
m∧
j=1

ξN0 qj(x, a
′,
ξ1
ξ0
, ζ)

.
= 0

)
,

which is an instance of a tame formula over A by Fact 3.8. Observe that the element
ξ0 in ψ(x, a

′) is never 0, for a1, . . . , an are linearly independent over E, so e1 = ξ1
ξ0
.

Thus, the two instances are equivalent, as desired. □Claim 1
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Claim 2. An instance of a tame formula with parameters in aclP (A) which is
equivalent to an LP -formula with parameters in A is equivalent to an instance of a
tame formula over A.

Proof of Claim 2. Suppose the element b is algebraic over A and consider the
instance

φ(x, b) = ∃ ζ ∈ P r

(
¬ ζ .

= 0 ∧
m∧
j=1

qj(x, b, ζ)
.
= 0

)
,

or equivalently using a di�erent notation

φ(x, b) = ∃ ζ ∈ P r
(
¬ ζ .

= 0 ∧ (x, ζ) ∈ V
(
I(b)

))
,

where I(b) is the ideal of K[X,Z], homogeneous in Z, generated q1(X, b, Z),. . . ,
qn(X, b, Z).

Let now b = b1, . . . , bn be the LP -conjugates of b over A. Since φ(x, b) is equiv-
alent to an LP -formula with parameters in A, we have that φ(x, b) is equivalent to
the disjunction

∨n
i=1 φ(x, bi), which is again an instance of a tame formula, namely

∃ ζ ∈ P r
(
¬ ζ .

= 0 ∧ (x, ζ) ∈ V(J)
)
,

where J is the product ideal I(b1) · · · I(bn). The ideal J is invariant under all auto-
morphisms of (K,E) �xing A pointwise, so by Weil's theorem its �eld of de�nition
is contained in dclP (A). Hence, the ideal J can be generated by polynomials over
dclP (A) which are homogeneous in Z. Therefore, the instance φ(x, b) is equivalent
to an instance of a tame formula with parameters in dclP (A). By Claim 1, we con-
clude that φ(x, b) is equivalent to an instance of a tame formula with parameters
over A, as desired. □Claim 2

We now have all the ingredients to prove the statement of the proposition. Con-
sider thus an instance φ(x, b) of a tame formula and assume that φ(x, b) is equivalent
to an Lp-formula θ(x, a) with parameters over A. Consider �rst the case that A
is not fully contained in E, so by Fact 3.5 and Remark 3.6, the subset aclP (A) is
the universe of an elementary substructure k of (K,E). Hence, there is some b′ in
aclP (A) such that φ(x, b′) is equivalent to θ(x, a) (and thus to φ(x, b)). We deduce
from Claim 2 that φ(x, b) is equivalent to an instance of a tame formula over A, as
desired.

Thus, we need only consider the case that the parameter set A is a subset of E.
Choose a small elementary substructure k of (K,E) containing A. By saturation,
there is some element a′ in K which is transcendental over the sub�eld E · k. Set
now A′ = A ∪ {a′} and deduce from the above paragraph as well as from Claim 2
that φ(x, b) is equivalent to an instance

φ1(x, a, a
′) = ∃ ζ ∈ P r

(
¬ ζ .

= 0 ∧
m∧
j=1

qj(x, a, a
′, ζ)

.
= 0

)
,

where a is a tuple of elements in A. Let c in k be a realisation of φ1(x, a, a
′) and e

some tuple in E . Since a′ is transcendental over E ·k, we have that qj(c, a, a′, e) = 0
if and only if the polynomial q(c, a, Y, e) is the trivial polynomial (which is equivalent
to a �nite system of polynomial equations). Set now

φ2(x, a) = ∃ ζ ∈ P r

(
¬ ζ .

= 0 ∧
m∧
j=1

qj(x, a, Y
′, ζ)

.
= 0

)
,
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which is again an instance of a tame formula with parameters in A. It is now clear
that

θ(k, a) = φ(k, b) = φ1(k, a, a
′) = φ2(k, a).

Since θ(x, a) and φ1(x, a) have parameters in A ⊂ k, we conclude that φ2(x, a) is
equivalent to θ(x, a), and thus to φ(x, b), as desired. □

4. An indirect proof of the Noetherianity of ACFP

In this section we will give a simple proof that the instances of tame formulae
have the DCC in the theory ACFP of proper pairs of algebraically closed �elds.
Whilst the methods we will use for the proof are elementary, using the strength of
Corollary 2.14, they do not explicitly allow to produce the minimal tame formula
in a given type. The subsequent Section 6 will provide an explicit description of
the minimal tame formula of a given type using results on the Hilbert polynomials
of saturated ideals.

Proposition 4.1. Given a λ-closed sub�eld k and a �nite tuple a of K, there is
some LP -formula θ(x) in tpP (a/k) which implies every instance of a tame formula
in tpP (a/k).

Proof. With respect to a �xed compatible total order of the collection of monomials
on X, choose a Gröbner basis r1, . . . , rm of the vanishing ideal I(a/E · k). Clearing
denominators, we may assume that each ri has coe�cients in the ring k[E] generated
by k ∪ E. Write ri = ri(X, e), where ri(X,Z) is a polynomial in k[X,Z] and e is
a tuple from E. Let ρj(e) be the leading coe�cient of rj(x, e) with respect to our
compatible total order and denote by q(e) the product of all the ρj(e)'s. Choosing
a system of generators of the vanishing ideal I(e/k), denote by γ(Z) the locus of e
over k.

We will show that the LP -formula

θ(x) = ∃ ζ ∈ P
(
γ(ζ) ∧ ¬ q(ζ) .= 0 ∧

∧
1≤i≤m

ri(x, ζ)
.
= 0

)
has the desired property as in the statement. Notice �rst of all that the above
formula belongs to tpP (a/k), setting ζ = e.

Consider now an instance of a tame formula

φ(x) = ∃ ζ ′ ∈ P
(
¬ ζ ′ .= 0 ∧

∧
1≤ℓ≤M

pℓ(x, ζ
′)
.
= 0

)
in tpP (a/k), where the polynomials pℓ in k[X,Z ′] are homogeneous in the tuple
of variables Z ′. Since a realises φ, there exists a non-trivial tuple e′ in E with
pℓ(a, e

′) = 0 for every 1 ≤ ℓ ≤ M . Now, each polynomial pℓ(X, e
′) belongs to

I(a/E · k), so after multiplying by a suitable power q(e)N of the product of all the
leading coe�cients ρj(e)'s, write

q(e)Npℓ(X, e
′) =

∑
1≤i≤m

hℓ,i(X, e, e
′)ri(X, e)

for some polynomials hℓ,i(X,Z,Z
′) over k, homogeneous in the tuple of variables

Z ′ of the same degree as pℓ(X,Z
′).

The formula

ρ(ζ) = ∃ ζ ′ ∈ P
(
¬ ζ ′ .= 0 ∧

∧
1≤ℓ≤M

q(ζ)Npℓ(X, ζ
′) −

∑
1≤i≤m

hℓ,i(X, ζ, ζ
′)ri(X, ζ)

.
= 0

)



NOETHERIAN THEORIES 15

is an instance of a tame formula in the type tpP (e/k). Since k is λ-closed, Lemma
3.10 yields that ρ(E) is equivalent to the E-rational points of a Zariski closed set
de�ned over λ(k). In particular, every solution of the locus γ(ζ) of e over k must
satisfy ρ(ζ).

Choose now a realisation b of the above formula θ(x) and let f be the correspond-
ing tuple from E. Since f is a solution of γ(ζ), it realises ρ(ζ), so there exists a
non-trivial tuple f ′ in E such that q(f)Npℓ(X, f

′) =
∑

1≤i≤m hℓ,i(X, f, f
′)ri(X, f)

for every 1 ≤ ℓ ≤ M . Since ri(b, f) = 0 for all i yet q(f) ̸= 0, it follows that
pℓ(b, f

′) = 0 for all 1 ≤ ℓ ≤ M . We conclude that every realisation b of θ realises
φ, as desired. □

Corollary 2.14, Fact 3.8 and Proposition 4.1 immediately yield the following.

Corollary 4.2. The theory ACFP of proper pairs of algebraically closed �elds is
Noetherian with respect to the collection of tame formulae. □

By Remark 2.15 and Proposition 3.11, we deduce the following result.

Corollary 4.3. Every type over a subset A of K contains an instance φ(x, a) of a
tame formula which implies every formula in p which is equivalent to an instance
of a tame formula. □

5. Morley, Lascar and Poizat

In [16, Subsection 2.2, p. 1660], Poizat stated (without proof) that the following
rank equality holds for every type p = tp(a/k) over an elementary substructure k
of a su�ciently saturated proper pair (K,E) of algebraically closed �elds:

U(p) = RM(p) = ω · tr(a/E · k) + tr(α/E ∩ k),
where α is the canonical base in the reduct ACF of k(a) over E. (Note that there
is a misprint in [16]). He deduced from the above identity that the dimension
associated to the unique generic type of K is additive. Though Poizat's formula
(and its proof) is probably well-known, we will nonetheless take the opportunity to
give a detailed proof in this section. Our proof yields in particular that the Morley
rank of a type over a λ-closed sub�eld can be isolated by a tame formula, and thus
the theory ACFP admits Noetherian isolation, by Corollary 2.29. In order to prove
Poizat's formula, we will need some auxiliary results regarding the behaviour of
non-forking independence in ACFP.

The theory ACFP of proper pairs of algebraically closed �elds is a particular case
of a more general construction due to Poizat [15], who showed that the common
theory of belles paires of models of a stable theory T is again stable whenever T
does not have the �nite cover property (nfcp). For a stable theory, nfcp is equivalent
[18, Chapter II, Theorem 4.4] to the elimination of ∃∞ in T eq. The theory of
algebraically closed �elds eliminates both imaginaries and the quanti�er ∃∞, so it
has nfcp. However, there are Noetherian theories with fcp, as the following example
shows.

Remark 5.1. In the language L consisting of a single binary relation E(x, y) for an
equivalence relation, consider the theory of the L-structures which have exactly one
equivalence class of size n for every 1 ≤ n in N. This theory is ω-stable of Morley
rank 2 and admits quanti�er elimination after adding countably many constant
symbols as canonical representatives of the �nite equivalence classes. In particular,
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this theory is Noetherian, but does not eliminate ∃∞, witnessed by the formula
E(x, y).

In [1], Ben Yaacov, Pillay and Vassiliev generalised Poizat's belles paires of stable
structures to pairs of models of a simple theory. Akin to the result of Poizat, when
the corresponding theory of pairs is �rst-order, then it is again simple. Moreover,

non-forking independence in the theory of the pair (which we will denote by |⌣
P
)

can be characterised in terms of the independence(s) in the L-reduct of the sets as
well as of the canonical bases over the predicate, which in our setting corresponds
to taking λ-closures, up to interalgebraicity.

All throughout this section, work inside a su�ciently saturated proper pair
(K,E) of the theory ACFP of proper pairs of algebraically closed �elds. All subsets
and tuples considered are small with respect to the saturation of (K,E).

Fact 5.2. ([1, Remark 7.2 & Proposition 7.3]) Let a be a �nite tuple and k ⊂ L
be sub�elds of K. We have the following description of non-forking:

a
P

|⌣
k

L if and only if



k(a) |⌣
E·k

E · L

and

λ(k(a)) |⌣
λ(k)

λ(L)

From the above description of non-forking, we easily deduce the following con-
sequence.

Lemma 5.3. Assume k ⊂ L are sub�elds of K. Given a tuple a in K, whenever

k(a) |⌣
E·k

E · L,

we have that λ(L(a)) is interalgebraic with λ(k(a)) over λ(L). In particular, if

a |⌣
P

k
L, then λ(L(a)) and λ(k(a)) are interalgebraic over λ(L).

Proof. Since λ(k(a)) is contained in λ(L(a)), we need only show by Remark 3.1
that (

λ(L) · λ(k(a))
)alg · L(a) |ld⌣(

λ(L)·λ(k(a))
)alg

E,

or equivalently,

λ(k(a)) · L(a) |⌣
λ(L)·λ(k(a))

E.

Now, the �elds k(a) and E are linearly disjoint over λ(k(a)), so

λ(k(a)) · k(a) |⌣
λ(k(a))·k

E · k.

Together with the assumption

k(a) |⌣
E·k

E · L,

we deduce by transitivity of non-forking independence that

λ(k(a)) · k(a) |⌣
λ(k(a))·k·

E · L
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and thus

λ(k(a)) · L(a) |⌣
λ(k(a))·L

E · L. (⋆)

Remark 3.1 yields that the sub�eld λ(L) · L is linearly disjoint from E over λ(L),
and therefore by monotonicity

λ(k(a)) · L |⌣
λ(L)·λ(k(a))

E.

Together with (⋆), we conclude by transitivity that

λ(k(a)) · L(a) |⌣
λ(L)·λ(k(a))

E,

as desired. □

Notation. Given a tuple a and a sub�eld k of K, set

rm(a/k) = ω · tr(a/E · k) + tr(λ(k(a))/λ(k)).

Poizat's formula now translates as U(a/k) = RM(a/k) = rm(a/k). In order to
show that these three ranks agree, we will �rst show that the rank rm controls
non-forking.

Lemma 5.4. The ordinal-valued rank rm witnesses non-forking: Given sub�elds
k ⊂ L and a tuple a of K, we have that

a
P

|⌣
k

L if and only if rm(a/k) = rm(a/L).

Proof. Adding to a set the values of its λ-functions does not a�ect non-forking
independence in ACFP, since the λ-functions are LP -de�nable. Moreover, none of
the transcendence degrees occurring in rm(a/k) change when passing from k to the
intermediate λ-closed �eld extension k ⊂ λ(k) · k ⊂ E · k, so we may assume that
k, and analogously L, is λ-closed.

We prove �rst that the rank rm remains constant when passing to a non-forking
extension. By the description of non-forking in Fact 5.2, we have that

k(a) |⌣
E·k

E · L and λ(k(a)) |⌣
λ(k)

λ(L), (♮)

so tr(a/E ·k) ((♮))= tr(a/E ·L). Now, Lemma 5.3 yields that λ(L(a)) is interalgebraic
with λ(k(a)) over λ(L), so

tr(λ(k(a))/λ(k))
((♮))
= tr(λ(k(a))/λ(L)) = tr(λ(L(a))/λ(L)).

Therefore,

rm(a/k) = ω · tr(a/E · k) + tr(λ(k(a))/λ(k)) =

= ω · tr(a/E · L) + tr(λ(L(a))/λ(L)) = rm(a/L),

as desired.
Let us now prove the converse: If a ̸ |⌣

P

k
L, then rm(a/L) < rm(a/k). Again by

Fact 5.2, one of the two independences in ((♮)) cannot hold. If k(a) ̸ |⌣E·k E · L,
the leading coe�cient of ω in rm(a/L) is strictly smaller than the coe�cient of ω
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in rm(a/k), so we are done. We may thus assume that k(a) |⌣E·k E · L and hence

λ(L(a)) is interalgebraic with λ(k(a)) over λ(L) by Lemma 5.3. However

λ(k(a)) ̸ |⌣
λ(k)

λ(L),

so tr(λ(L(a))/λ(L)) = tr(λ(k(a))/λ(L)) < tr(λ(k(a))/λ(k)). We conclude that
rm(a/L) < rm(a/k), as desired. □

In this section, we will show Poizat's formula in two steps: First, we show that
the rank rm is connected (cf. Lemma 5.5), so it must be bounded from above by
Lascar rank, as both ranks witness non-forking. We will then show that every type
over a λ-closed sub�eld can be isolated by a tame formula among types of larger
rm-rank, which will then give that the rank rm is bounded from below by Morley
rank. Now, the inequality U(p) ≤ RM(p) always holds for all types, so putting all
together we obtain the equality of all three ranks.

Lemma 5.5. Consider a sub�eld k of K and a �nite tuple a. Assume that α <
rm(a/k) for some ordinal number α. Then there is some �eld extension k ⊂ L with
α ≤ rm(a/L) < rm(a/k). It follows that rm(p) ≤ U(p) for every type p, by Lemma
5.4.

Proof. As in the proof of Lemma 5.4, we may assume that k is λ-closed. The proof
follows immediately by trans�nite induction from the following two claims:

Claim 1. If rm(a/k) = β + 1, then there is some L ⊃ k with rm(a/L) = β.

Proof of Claim 1. Write

β + 1 = rm(a/k) = ω · tr(a/E · k) + tr(λ(k(a))/λ(k)),

so 0 < tr(λ(k(a))/λ(k)) = m + 1 for some natural number m. In particular,
there is a transcendental element e in λ(k(a)) over λ(k). Set L = k(e). Notice
that λ(L) = λ(k)(e) by Remark 3.1, since k and E are linearly disjoint over λ(k).
Analogously, we have that λ(L(a)) = λ(k(a))(e). As tr(λ(k(a))/λ(k)(e)) = m, we
conclude that

rm(a/L) = ω · tr(a/E · L) + tr(λ(L(a))/λ(L)) = ω · tr(a/L · E) +m = β,

as desired. □Claim 1

Claim 2. If rm(a/k) = ω · (n+ 1) for some n in N, then for every m in N there is
some �eld extension k ⊂ L with ω · n+m ≤ rm(a/L) < rm(a/k).

Proof of Claim 2. Since

ω · (n+ 1) = rm(a/k) = ω · tr(a/E · k) + tr(λ(k(a))/λ(k)),

we deduce that λ(k(a)) is algebraic over λ(k), so k(a) and E are algebraically
independent over λ(k). Moreover, the transcendence degree tr(a/E · k) is strictly
positive, so choose some element c in k(a) transcendental over E ·k. By saturation,
there are elements e0, . . . , em−1 in E transcendental over k. Set b =

∑m−1
i=0 eic

i

and notice that that b and c are interalgebraic over E · k. Thus, the element b is
transcendental over E · k. It follows that tr(a/E · k(b)) = n < tr(a/E · k). Set thus
L = k(b) and notice that

rm(a/L) < rm(a/k).
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The �eld L is trivially linearly disjoint from E · k over k, since b is transcendental
over E ·k. Therefore, the �eld λ(L) equals λ(k) by Remark 3.1 and transitivity, for
k is λ-closed.

Both elements b and c belong to L(a), so e0, . . . , em−1 lie in λ(L(a)). Hence,

tr(λ(L(a))/λ(L)) ≥ tr(e0, . . . , em−1/λ(k)) = m.

Therefore

rm(a/k) > rm(a/L) = ω · tr(a/E · L) + tr(λ(L(a))/λ(L)) ≥ ω · n+m,

as desired. □Claim 2 □

We are now left to bounding the Morley rank from above in terms of the rank
rm. We will do so in terms of an explicit tame formula χ which will isolate the
type p among those types rm-rank at least rm(p). However, the tame formula χ we
exhibit need not be the minimal tame formula in the type p (as in Corollary 2.14).

Proposition 5.6. Consider a �nite tuple a and a λ-closed sub�eld k of K. There
exists an instance χ in tpP (a/k) of a tame formula such that rm(b/k) ≤ rm(a/k)
for every realisation b of χ in K. Moreover,

rm(b/k) = rm(a/k) ⇐⇒ tpP (b/k) = tpP (a/k)

Proof. Let n = tr(a/k · E). Using [9, Theorem III.8] we conclude from

a |ld⌣
λ(k(a))·k

E · k,

that I(a/k · E)) has generators r1(X), . . . , rN (X) with coe�cients in the ring gen-
erated by k ∪ λ(k(a)), after possibly clearing denominators. Write thus ri(X) =
ri(X, ei), for polynomials ri(X,Z) ∈ k[X,Z] and ei in λ(k(a)). We may assume
that each ri is linear in Z with ri(X, fi) is non-zero, whenever fi ∈ E is non-zero.

Setting now n = tr
(
a/k · λ(k(a))

)
, we may assume that for each n + 1-element

subtuple of a, one of the ri's witnesses that this subtuple is algebraically dependent
over λ(k(a)) · k.

Denote by γ(Z1, . . . , ZN ) the locus of ē = (e1, . . . , eN ) over k, homogeneous in
every Zi. Then the LP -formula

χ(x) = ∃ ζ1 ∈ P . . .∃ ζN ∈ P
( N∧
i=1

¬ ζi
.
= 0 ∧ γ(ζ1, . . . , ζN ) ∧

N∧
i=1

ri(x, ζi)
.
= 0

)
in tpP (a/k) is equivalent to a tame formula, by Fact 3.8.

Given a realisation b of χ, let f̄ = (f1, . . . , fN ) be non-trivial tuples in E with
r1(b, f1) = · · · = rn(b, fn) = 0. Since the ri(X, fi) are non-zero, it follows that

tr(b/k · E) ≤ tr(b/k(f̄)) ≤ n.

If tr(b/k·E) < n, we have rm(b/k) < rm(a/k). So let us assume from now on that
tr(b/k ·E) = n, so b |⌣k(f̄)

E. Corollary 3.4 yields now that λ(k(b)) ⊂ acl
(
λ(k)(f̄)

)
,

so tr(λ(k(b))/λ(k)) ≤ tr(f̄/λ(k)). Analogously, we have that

tr(λ(k(a))/λ(k)) = tr(ē/λ(k)),

since the tuple ē belongs to λ(k(a)). Since (f̄) satis�es γ(Z̄), we have

tr(f̄/λ(k)) ≤ tr(ē/λ(k)).
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If the inequality is strict, we deduce that rm(b/k) < rm(a/k). Assume therefore
that tr(f̄/λ(k)) = tr(ē/λ(k)). We want to show that b and a have the same LP -type
over k. First, observe that tr(f̄/(k) = tr(ē/k), so f̄ and ē have the same type over
k, as a sequence of homogeneous tuples. By Fact 3.5, using that k is λ-closed, we
deduce that f̄ and ē have the same LP -type over k. Hence, there exists a tuple
a′ in K such that (a′, ē) has the same LP -type over k as (b, f̄). In particular, the
tuple a′ is a solution of I(a/k · E) with tr(a′/k · E) = n. This implies that a′ and
a have the same type over E · k, and thus the same LP -type over k by Fact 3.5, as
desired. □

Corollary 5.7. Given a sub�eld k of K and a �nite tuple a, we have that RM(a/k) ≤
rm(a/k).

Proof. Morley rank does not change working over independent parameters and
neither does rm by Lemma 5.4. Thus, we may assume that k is ℵ0-saturated
elementary substructure of the pair (K,E) and in particular λ-closed.

For the inequality RM(a/k) ≤ rm(a/k), it su�ces to show inductively on α that
α ≤ rm(a/k) whenever α ≤ RM(a/k). We need only consider the case α = β + 1.
Let χ be a tame formula in tpP (a/k) as in Proposition 5.6. If β + 1 ≤ RM(a/k),
the type tpP (a/k) is an accumulation point of types over k of Morley rank at least
β. We may thus assume that there is a type tpP (b/k) ̸= tpP (a/k) of Morley rank
at least β containing the formula χ, so

rm(b/k)
5.6
< rm(a/k).

By induction on β ≤ RM(b/k), we have that β ≤ rm(b/k), and thus α = β+1 ≤
rm(a/k), as desired. □

We deduce immediately from Lemma 5.5 as well as Corollaries 2.29 and 5.7 that
Poizat's formula holds for proper pairs of algebraically closed �elds.

Corollary 5.8. In every su�ciently saturated proper pair (K,E) of algebraically
closed �elds, Morley and Lascar rank agree: Given a �nite tuple a and a sub�eld k
of K,

U(a/k) = RM(a/k) = ω · tr(a/E · k) + tr(λ(k(a))/λ(k)).

By Fact 3.5, Propositions 3.11 (Claim 1) and 5.6 as well as Corollary 5.8, we
deduce the following result:

Corollary 5.9. Given a type p over an arbitrary subset A of parameters of (K,E),
there exists an instance of a tame formula in p which isolates it among all types over
A of rank at least RM(p). In particular, the theory ACFP has Noetherian isolation.

6. Minimal formulae and Hilbert schemes

Corollary 2.14 and Corollary 4.2 together yield that every type contains a min-
imal tame formula. The goal of this section, which can be seen as a complement,
is to provide an explicit description of the minimal tame formula in a given type
tpP (a/k) whenever k is λ-closed. (By Proposition 3.11 (Claim 1)), the parameter
set being λ-closed is not an actual obstacle). For this, we will need several results
which involve the technology of Hilbert polynomials and Hilbert schemes. Since the
classical references we consulted do not explicitly provide the construction of the
Hilbert scheme as a projective variety, we have decided to exhibit the construction
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here, keeping the exposition as elementary as possible. Most of the results from
algebraic geometry in this section can be found in [4, 12], unless explicitly stated.

De�nition 6.1. Given a base �eld F , a homogeneous ideal I of F [X0, . . . , Xn]
is saturated if the homogeneous polynomial p(X̄) belongs to I, whenever XN

i · p
belongs to I for all 0 ≤ i ≤ n and N large enough.

The homogeneous vanishing ideal over F of a non-zero tuple in some �eld ex-
tension of F is clearly saturated. Given a homogeneous ideal J of F [X0, . . . , Xn],
the smallest saturated ideal Sat(J) containing J consists of all homogeneous poly-
nomials p(X̄) such that for some N in N all the products XN

i · p with 0 ≤ i ≤ n
belong to J .

Remark 6.2. Given a homogeneous ideal J of F [X0, . . . , Xn], let Jd be the collec-
tion of all homogeneous polynomials in J of degree d. It is easy to see that Jd and
Sat(J)d are equal for large enough d. Moreover, two saturated ideals I and I ′ are
equal if Id = I ′d for in�nitely many d′s.

A polynomial is numerical if it has rational coe�cients, yet it takes integer values
when evaluated on Z. It was originally shown by Hilbert [6] that the codimension
of the d-graded component of a homogeneous ideal J of F [X0, . . . , Xn] is given in
terms of a (unique) numerical polynomial QJ(T ), called the Hilbert polynomial :
there exists a degree d0 such that QJ(d) = codimF (Jd, F [X0, . . . , Xn]d) for d ≥ d0.
It follows that

dimF Jd =

(
d+ n

n

)
−QJ(d)

is also a polynomial in d for d ≥ d0.
A result due to Mumford shows that, as long as we restrict our attention to

saturated ideals, the above value d0 can be chosen depending only on the Hilbert
polynomial.

Fact 6.3. ([4, Theorem III-55 & Page 263] & [12, Lecture 14]) Given a numerical
polynomial Q(T ) there exists a natural number d0 such that for every saturated
ideal I of F [X0, . . . , Xn] with Hilbert polynomial Q we have

dimF Id =

(
d+ n

n

)
−Q(d) for all d ≥ d0.

Moreover, the sum
⊕

d≥d0

Id is generated by Id0
.

For the next of this section, �x a numerical polynomial Q as well as the associated
degree d0 as above and set

N0 =

(
d0 + n

n

)
−QI(d0).

We deduce from Fact 6.3 the following consequence:

Lemma 6.4. The assignment I 7→ U = Id0
de�nes a bijection between all saturated

ideals I of F [X0, . . . , Xn] with Hilbert polynomial Q and the set Hn
Q of all subspaces

U of F [X0, . . . , Xn]d0 satisfying

dimF ⟨U⟩d =

(
d+ n

n

)
−Q(d) for all d ≥ d0, (➹)

where ⟨U⟩ is the ideal generated by U .
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Proof. If I is saturated with Hilbert polynomial Q, then U = Id0
belongs to Hn

Q,

since ⟨U⟩d = Id for all d ≥ d0. This also shows that I = Sat⟨U⟩ is uniquely
determined by U . Conversely, if U belongs to Hn

Q, it follows that I = Sat⟨U⟩ has
Hilbert polynomial Q, by Remark 6.2. In particular,

dimF Id0
= N0 = dimF U,

whence Id0
= U , as desired. □

We will see below that the collection of N0-dimensional subspaces of the d0-
graded component F [X0, . . . , Xn]d0

form a projective varietyGrN0
(F [X0, . . . , Xn]d0

),
called the N th

0 Grassmannian. Together with Lemma 6.4, Lemma 6.5 yields that
Hn

Q is a Zariski closed subset of GrN0(F [X0, . . . , Xn]d0) de�nable without parame-

ters (or de�ned over Z in algebraic terms). We refer to Hn
Q as the Q-Hilbert-scheme

of the n-dimensional projective space Pn. It is easy to see that every suitable choice
of the degree d0 yields the same scheme Hn

Q, up to canonical isomorphism.
Fix some N in N. To view the set of all r-dimensional subspaces V of a vector

space FN as a projective variety, we will encode V by the exterior product v1 ∧
· · · ∧ vr, where v1, . . . , vr denotes some basis of V . Up to a non-zero scalar factor
this exterior product only depends on V , so it determines a unique element of the
projective space P(

∧r
FN ). Its coordinates are the Plücker coordinates Pk(V ) of V .

Given Plücker coordinates Pk(V ) = v1 ∧ · · · ∧ vr in P(
∧r

FN ), we recover V as the
set of all vectors v in FN such that v ∧ (v1 ∧ · · · ∧ vr) = 0. The collection Grr(F

N )
of Plücker coordinates η is given by the quadratic equations η ∧ (e∗ ⌟ η) = 0, where

e∗ runs through some basis of
∧r−1

(FN )∗ and the map

⌟ :
∧r−1

(FN )∗ ×
∧r

(FN ) → F

is the (bilinear) inner product of exterior algebra (see [3, Résultats d'Algèbre, IX]).
Thus, the rth-Grassmannian Grr(F

N ) of FN is a projective variety.

Lemma 6.5 (Grothendiek). For d0 large enough, the set Hn
Q as de�ned in Lemma

6.4 is a Zariski closed subset of GrN0
F [X0, . . . , Xn]d0

, de�nable without parameters.

Proof. Sperner [19] gave a simpli�ed proof of a result of Macaulay [10] which shows
that if Q is the Hilbert polynomial of some homogeneous ideal in n + 1 variables
and d1 is large enough (depending only on n and Q), then for any homogeneous
ideal J of F [X0, . . . , Xn] with

dim Jd1 ≥
(
d1 + n

n

)
−Q(d1),

it follows that

dim Jd ≥
(
d+ n

n

)
−Q(d) for all d ≥ d1.

Let us now show that Hn
Q is a Zariski closed subset of GrN0

F [X0, . . . , Xn]d0
. If no

saturated ideal of F [X0, . . . , Xn] has Q as Hilbert polynomial, then Hn
Q is empty

and thus Zariski closed. Otherwise, let d1 be the degree of Macaulay-Sperner and
choose d0 ≥ d1 in Lemma 6.4. It now follows that an N0-dimensional subspace U
of F [X0, . . . , Xn]d0 satis�es the condition ((➹)) of Lemma 6.4 if and only if

dimF ⟨U⟩d ≤
(
d+ n

n

)
−Q(d) for all d ≥ d0.
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If η are the Plücker coordinates of U , the polynomials e∗ ⌟ η, where e∗ runs among

the elements of the canonical basis of
∧N0−1

(F [X0, . . . , Xn]d0
)∗, generate U as an

F�vector space [3, Résultats d'Algèbre, IX]. Thus, the d-graded component ⟨U⟩d is
generated as an F�vector space by the polynomials Mα · (e∗ ⌟ η), where the Mα's
enumerate all monomials in the variables X0, . . . , Xn of degree d− d0. Hence, the
Plücker coordinates η belong to Hn

Q if an only if for all d ≥ d0 the dimension of the

vector space generated by the Mα · (e∗ ⌟ η) is bounded by
(
d+n
n

)
− Q(d). The last

condition can be expressed by determinantal equations in the coe�cients of η, as
desired. □

Corollary 6.6. Let Q be a numerical polynomial and d0 the corresponding value
as in Lemma 6.5. Then for any polynomial h in Z[X0, . . . , Xn, Y0, . . . , Ym], homo-
geneous of degree ≥ d0 in X and homogeneous in Y , there is a system of equations
SQ,h(η, Y0, . . . , Ym) over Z, homogeneous in η and in Y , such that

h(X0, . . . , Xn, f) ∈ I ⇔ SQ,h(η, f) = 0 for all f in F and η in Hn
Q,

where I is the saturated ideal which corresponds to η.

Proof. Using the notation of the proof of Lemma 6.5, notice that h(X0, . . . , Xn, f)
belongs to I if and only if the vector-space over F generated by the polynomials
Mα ·(e∗ ⌟ η) as well as h(X0, . . . , Xn, f) has dimension at most

(
d+n
n

)
−Q(d). Again,

this can be expressed using determinantal equations in f as well as in the coe�cients
of η. □

Using that Hn
Q is a projective subvariety of the Grassmannian, we will exhibit in

Theorem 6.7 the minimal tame formula in the type tpP (a/k), where a = (a1, . . . , an)
is a �nite tuple of a (su�ciently saturated) model (K,E) of ACFP and k is a small
λ-closed sub�eld of K.

The homogeneous vanishing ideal I of 1, a1, . . . , an over the sub�eld F = E · k
is saturated, so denote by Q its Hilbert polynomial. Choose d0 as in Lemmata 6.4
and 6.5 and set

N0 =

(
d0 + n

n

)
−QI(d0),

the dimension of the E · k-vector space U = Id0 , whose Plücker coordinates η =
Pk(U) lie in GrN0((E · k)[X0, . . . , Xn]d0). We may assume that the coe�cients of
η belong to the ring generated by E ∪ k. As in the proof of Lemma 5.6, write each
entry ηi as a linear form ηi(e) with coe�cients in k with respect to some non-zero
tuple e of E such that ηi(f) is not trivial, whenever the tuple f in E is non-trivial.

Denote by γ(ζ) the homogeneous locus of e over k. By Lemma 6.5, there is a
system of homogeneous equations Hn

Q(η(ζ)) such that for every tuple f in E, the

Plücker coordinates η(f) belong to Hn
Q if and only if Hn

Q(η(f)) is true. Finally,
choose some enumeration e∗ of the dual basis of the canonical basis of the exterior
product

∧N0−1
(E · k)[X0, . . . , Xn]d0

.

Theorem 6.7. The formula

χ(x) = ∃ζ ∈ P
(
¬ ζ .

= 0 ∧ γ(ζ) ∧ Hn
Q(η(ζ)) ∧

∧
i

(e∗i ⌟ η(ζ))(1, x1, . . . , xn)
.
= 0

)
is the minimal tame formula in tpP (a/k).
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Proof. Notice that the above formula belongs to tpP (a/k), setting ζ = e. Assume
now that we are given an instance of a tame formula

φ(x) = ∃ ζ ′ ∈ P
(
¬ ζ ′ .= 0 ∧

∧
ℓ

pℓ(x, ζ
′)
.
= 0

)
in tpP (a/k) for some polynomials pℓ in k[X,Z

′], homogeneous in the variables Z ′.
In particular, there exists a non-trivial tuple e′ in E such that pℓ(a, e

′) = 0 for
every index ℓ.

After multiplying the terms of each polynomial pℓ(X,Z
′) by suitable powers of

X0, the resulting polynomials p∗ℓ (X0, X, Z
′) are homogeneous in X0, . . . , Xn, all

of the same degree d ≥ d0. (Notice that these polynomials remain homogeneous
in Z ′). Now, every polynomial p∗ℓ (X0, X, e

′) belongs to I, since p∗ℓ (1, a, e
′) = 0. If

SQ,pℓ
(η, Z ′) denote the equations of Corollary 6.6, we then have that SQ,pℓ

(η(e), e′) =
0 for all ℓ. Hence, the tame formula

θ(ζ) = ∃ ζ ′ ∈ P
(
¬ ζ ′ .= 0 ∧

∧
ℓ

SQ,pℓ
(η(ζ), ζ ′)

.
= 0

)
belongs to tpP (e/k). As k is λ-closed, Lemma 3.10 yields that the formula θ is
equivalent for realisations in E to a �nite system of equations ρ(ζ) with coe�cients
in k, homogeneous in ζ. In particular, every solution of the homogeneous locus γ(ζ)
of e over k is a solution of the system ρ(ζ) = 0, and thus satis�es θ.

Choose now a realisation b of our formula χ(x) and let f be the corresponding
non-trivial tuple from E. The condition Hn

Q(η(ζ)) in χ imposes that the Plücker

coordinates η(f) belong to Hn
Q. Therefore, the tuple η(f) are the Plücker coordi-

nates of the d0-graded component Jd0
of some saturated homogeneous ideal J in

(E · k)[X0, . . . , Xn] whose Hilbert polynomial equals Q. Now, the subspace Jd0 is
generated by the quadratic expressions e∗ ⌟ η(f), where e∗ is our �xed dual basis.
It follows that all polynomials in J vanish at the tuple (1, b). Since f is a solution
of γ(ζ), it must realise θ by the above discussion, so there is a non-trivial tuple
f ′ in E such that SQ,pℓ

(η(f), f ′) = 0 for every index ℓ. Hence, the polynomials
p∗ℓ (X0, X, f

′) all belong to J , and hence 0 = p∗ℓ (1, b, f
′) = pℓ(b, f

′). We conclude
that every realisation b of χ realises φ, as desired. □
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