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1 Introduction

Let X be structure. A 2-sorted structure Ē = (E, X) is a finite cover of X if

1. there is 0-definable surjection π : E → X whose fibers Ex = π−1(x) have a bounded finite
cardinality

2. There is no new structure induced on X, i.e. every in Ē 0-definable relation on X is 0-
definable in X.

In this note we determine what the finite covers are in the simplest of all cases: where X is a
countable set without structure, a disintegrated set.

Remark 1.1 Let Ē be a finite cover of X. Since Ē is algebraic over X every automorphism of
X extends to an automorphism of Ē. This shows that a finite cover of an ω–categorical structure
is also ω–categorical.

Since countable ω–categorical structures are - up to interdefinability - determined by their au-
tomorphism groups we will instead of giving the actual structures of the finite covers give their
automorphism groups.

The following lemma is easy to prove.

Lemma 1.2 A permutation group G on E ∪X is the automorphism group of a finite cover of X
if the following conditions are satisfied:

1. G is a closed subgroup of Sym(E ∪X)

2. Every element of G respects the fibration π.

3. Every permutation of X is induced by an element of G.

The kernel of a finite cover Ē is the set of all automorhisms σ which leave X pointwise fixed
i.e. Aut(Ē/X). All reducts Ē′ of Ē which are also finite covers are determined solely by their
kernel K ′. For one computes easily that Aut(Ē′) = Aut(Ē)K ′.

Let F be a set with f0 elements. We make (F × X, X) to a finite covering by adding the
natural projection π : F ×X → X and for every f ∈ F a predicate for the set {(f, x) | x ∈ X}.
We denote this structure by F × X. The reducts of F × X (and the covers sets isomorphic to
such reducts) are called splitting covers. Splitting covers are determined by their kernels. One
sees easily that this are exactly the closed subgroups of

∏
x∈X Sym(F ) which are invariant under

conjugation with elements of id× Sym(X).

In the next section we will prove that all finite covers of the disintegrated set split. In the last
section we determine the kernels of the splitting covers.
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2 The covers split

Let Ē = (E, X) be a finite cover of X. For subsets A of X let EA denote the union of the fibers
above A i.e. π−1(A).

Lemma 2.1 Let A be a subset of X. Then EA and X are orthogonal over A in the sense that

tp(EA/A) ` tp(EA/X)

Proof:
We can assume that A is finite. Then by restriction the finite group Aut(EA/A)/Aut(EA/X)
is a homomorphic image of Aut(E/A)/Aut(E/X), which is again by restriction isomorphic to
Aut(X/A) ∼= Sym(X \ A). But an infinite symmetric group has no non-trivial finite quotients.
Whence Aut(EA/A) = Aut(EA/X), which we had to show: two tuples from EA which are conju-
gate over A are conjugate over X.

This is just a group-proof of a more general fact: Let Ē be a finite cover of a strongly minimal
set X. If X weakly eliminates imaginairies and A is an algebraically closed subset of X then EA

and X are orthogonal over A.

Corollary 2.2 Let σ ∈ Sym(X) have support B. Then σ can be extended to σ̄ ∈ Aut(E) which
is the identity on EX\B.

Proof:
Since both X and EA are

∧
–definable over A

tp(EA/A) ` tp(EA/X)

is equivalent to
tp(X/A) ` tp(X/EA).

This, applied to A = X \B proves the assertion.

Lemma 2.3 For all a 6= b ∈ X there is a σab ∈ Aut(E) such that

1. σab induces the transposition (ab) on X,

2. σab fixes EX\{ab} pointwise,

3. σ2
ab = id

Proof:
By the corollary choose τab which satisfies 1 and 2. Then ρ = τ2

ab leaves everything fixed except
possibly Ea and Eb. If we conjugate ρ by τbc we obtain an automorphism ρc which leaves everything
fixed except possibly Ea and Ec. Furthermore ρc agrees with ρ on Ea. If we fix a and b and let c
tend to infinity the sequence (ρc) will converge to an automorphism σ which agrees with ρ on Ea

and is the identity else. Now set σab = σ−1τab

Theorem 2.4 Every finite cover of a disintegrated set splits

Proof:
We have to prove that there is a bijection between Ē and F × X which respects the fibration
and such that every 0-definable relation of Ē is mapped to a 0-definable relation of F × X i.e.
every automorphism of F ×X is the image of an automorphism of Ē. This amounts to finding a
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family (βx)x∈X of bijections βx : F → Ex such that every permutation σ of X can be lifted to an
automorphism σ̄ of Ē such that every diagram

F

Ex Eσ(x)

σ̄

βx

¡
¡

¡
¡

¡
¡ª -

S
S

S
S

S
Sw

βσ(x)

commutes. Fix an element a ∈ X and a bijection βa : F → Ea. Now chose for every b 6= a the
bijection βb : F → Eb in such a way that the diagram above commutes for σ = (ab), σ̄ = σab and
x = a. But then the diagram commutes for all x ∈ X. This is clear if x 6= b and follows from
σ2

ab = id if x = b. If σ ∈ Sym(X) has finite support it can be written as a product of transpositions
(abi). If we define σ̄ to be product of the σabi

the diagram commutes. Finally if σ is the limit of
permutations σi of finite support let σ̄ be an accumulation point of the σ̄i.

3 The kernels

Finally we determine the possible kernels of finite covers of disintegrated sets. Since all covers
split this is done by the following theorem:

Theorem 3.1 The closed subgroups K of
∏

x∈X Sym(F ) which are invariant under conjugation
with elements of id× Sym(X) are exactly the groups of the form

KG
H = {α ∈

∏

x∈X

G | ∀x, y αxH = αyH},

where G is a subgroup of Sym(F ) and H is a normal subgroup of G.

Proof:
Clearly all groups KG

H are closed and invariant under conjugation with elements of id× Sym(X).
Let conversely K be a group with this property. Fix a ∈ X and set

G = {σa | σ ∈ K}

and
H = {α | ∃σ ∈ K σa = α ∧ ∀x 6= a σx = id}.

We will prove that K = KG
H .

Let σ be an element of K. For each x ∈ X the a-component of σ(ax) is σx. This shows that all
σx lie in G. If x and y are given the components of the commutator κ = [σ, (xy)] are σxσ−1

y at x,
σyσ−1

x at y and the identity everywhere else. The limit τ = limz→∞ κ(yz) is an element of K whose
components are the identity except that τx = σxσ−1

y . Then τax ∈ K shows that σxσ−1
y ∈ H.

For the converse we remark first that by conjugation G and H do not depend on the choice of
a. This implies immediately that

∏
x∈X H is contained in K. If now σ is an arbitrary element

of KG
H choose an element τ of K such that σa = τa. Since all σx and all τx (by the first part of

the proof) are congruent mod H to σa = τa the quotient στ−1 belongs to
∏

x∈X H. This shows
σ ∈ K.
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