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We denote by C be a big saturated model (the monster model). If R,S are
binary relations on C the product RS is the class of all pairs (a, c) for which
there is a b ∈ C such that aRb and bSc. The smallest type–definable relation
which contains R is denoted by by R. The smallest invariant equivalence relation
whith a bounded number of classes is EL, the relation of having the same strong
Lascar type. The smallest bounded type–definable equivalence relation, EKP,
was introduced by Kim and Pillay.

The following theorem was proved by Lascar using the Lascar galois group:

Theorem 1 (D. Lascar)
EL EL = EKP

I will give another of this theorem.

A formula θ(x, y) is called thick if there is no infinite sequence of (ai) such
that ¬θ(ai, aj) for i < j. We denote by Θ(x, y) the relation which is defined by
the set of all thick formulas.

It is well known that EL is the transitive closure of Θ:

EL = Θ ∪Θ2 ∪Θ3 ∪ . . . .
We will prove Theorem 1 in the following slightly stronger form.

Theorem 2
EL Θ = EKP

Lemma 3 (Open mapping) Let A be a set of parameters, a an element and
θ(x, y) a thick formula, possibly with parameters from A. Then there is an LA–
formula φ in tp(a/A) such that every type p ∈ S(A) which contains φ can be
realized by an element b such that C |= θ(a, b).

Proof: We can assume that A is empty. Otherwise we name the elements of
A.

∗I thank H. Casanovas and F. Wagner for a helpful discussion.

1



Let D be the class of all conjugates of a and D0 a finite subset of D such
that D is contained in the definable class

B = {b ∈ C | C |= θ(a0, b) for some a0 ∈ D0}.
The set of all types p ∈ S(∅) which can be realized by an element of C \ B is
closed. Therefore the set Φ of all p with only realizations in B is open. Since
D ⊂ B, Φ contains tp(a). Thus we find a φ ∈ tp(a) such that every p which
contains φ can only be realized by elements of B.

Fix a p ∈ S(∅) which contains φ. Choose a realization b ∈ B and a0 ∈ D0

such that C |= θ(a0, b). Since a0 has the same type as a we find a b′ such that
ab′ has the same type as a0b. Then b′ realizes p and C |= θ(a, b′). This proves
the Lemma.

Let R and S be two invariant relations on C. It is easy to see1 that RS is
always contained in RS. The converse inclusion is not generally true: Take as a
model a set with a sequence of named elements 0, 1, 2, . . .. Take for R the set of
all pairs (0, 1), (0, 3), (0, 5), . . . and for S the set of all pairs (2, 0), (4, 0), (6, 0), . . ..
Then RS contains (0, 0) and RS is empty.

Of course, R and S are not connected in the following sense:

Definition 4 Two invariant relation R and S are called connected if there is a
complete type p over ∅ such that both, R(x, y) and S(y, z), imply p(y).

Example: Look at the group G = R × R with the lexicographical ordering.
Forget everything except the ordering, addition with (1, 0) and addition with
(0, 1). Define

R(x, y) ⇔
∨
n∈ω

y < x+ (0, n).

Since there is only one type over the empty set, R and R are connected. Also
R is transitive, while

R(x, y) ⇔
∧
n∈ω

y < x+ (1,−n)

is not. Whence RR 6= R = RR.

Lemma 5 Assume the invariant relations R and S to be connected2. Then

RS ⊂ RSΘ (1)
RS ⊂ ΘRS (2)
RS ⊂ ΘRSΘ (3)

1Note that the product of two type–definable relations is again type–definable.
2For (1) (and similarly for (2)) we only need that the first components of all pairs in S

realize the same type.
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Proof: We prove first (1). Assume (RS)(a, c). Since (RSΘ)(x, z′) can be
axiomatized

{∃z (ψ(x, z) ∧ θ(z, z′)) | ψ ∈ RS, θ thick}
we have to show that for all ψ(x, z) ∈ RS and all thick θ there is a c′ such
that RS(a, c′) and θ(c′, c). Let b be such that R(a, b) and S(b, c). If we apply
Lemma 3 to tp(c/b) we obtain a formula φ(z, b) such that every type over b
which realizes φ can be realized by an element c′ which satisfies θ(c′, c). Since
S(b, c), and R and S are connected, there is a c′ which realizes φ and satisfies
S(b, c′). By the choice of φ we can choose c′ in such a way that θ(c′, c).

The proof of (2) is symmetrical.

(3) follows from (1) and (2):

RS ⊂ RSΘ ⊂ ΘRSΘ = ΘRSΘ

Proof of Theorem 2: Fix a complete type. First we prove the theorem
restricted to the type p. We restrict the the meaning of EL, EL, Θ and EKP

the the realization set of p. We can then apply the last lemma. Since ELΘ is
type–definable it suffices to prove that ELΘ is transitive.

We have by the lemma ELEL ⊂ ELΘ and ELEL ⊂ ΘEL. This gives

ELΘ ⊂ ELEL ⊂ ΘEL ⊂ ELEL ⊂ ELΘ

and all four terms are equal. Part (3) of the Lemma gives

EL EL ⊂ ΘELΘ = ELEL.

Whence ELΘ is transitive:

ELΘELΘ = EL ELEL = ELEL
2 = ELEL = ELΘ.

Now the general case: Let for every complete type EL(p) be the closure of EL∩p2,
Θ(p) = Θ ∩ p2 and EKP(p) be the finest bounded type–definable equivalence
relation on p. We have proved that

EL(p)Θ(p) = EKP(p).

Since EKP(p) = EKP ∩ p2 this implies
⋃
p

EL(p) Θ = EKP.

But
⋃

p EL(p) ⊂ EL and the theorem is proved.
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