On a theorem of Lascar

Martin Ziegler *

October 5, 2000

We denote by \mathbb{C} be a big saturated model (the monster model). If R, S are binary relations on \mathbb{C} the product RS is the class of all pairs (a, c) for which there is a $b \in \mathbb{C}$ such that aRb and bSc. The smallest type–definable relation which contains R is denoted by by \overline{R} . The smallest invariant equivalence relation whith a bounded number of classes is E_L , the relation of having the same strong Lascar type. The smallest bounded type–definable equivalence relation, E_{KP} , was introduced by Kim and Pillay.

The following theorem was proved by Lascar using the Lascar galois group:

Theorem 1 (D. Lascar)

$$\overline{E_{\rm L}} \, E_{\rm L} = E_{\rm KP}$$

I will give another of this theorem.

A formula $\theta(x, y)$ is called thick if there is no infinite sequence of (a_i) such that $\neg \theta(a_i, a_j)$ for i < j. We denote by $\Theta(x, y)$ the relation which is defined by the set of all thick formulas.

It is well known that $E_{\rm L}$ is the transitive closure of Θ :

$$E_{L} = \Theta \cup \Theta^{2} \cup \Theta^{3} \cup \dots$$

We will prove Theorem 1 in the following slightly stronger form.

Theorem 2

$$E_L \Theta = E_{KP}$$

Lemma 3 (Open mapping) Let A be a set of parameters, a an element and $\theta(x, y)$ a thick formula, possibly with parameters from A. Then there is an L_{A^-} formula ϕ in $\operatorname{tp}(a/A)$ such that every type $p \in S(A)$ which contains ϕ can be realized by an element b such that $\mathbb{C} \models \theta(a, b)$.

PROOF: We can assume that A is empty. Otherwise we name the elements of A.

^{*}I thank H. Casanovas and F. Wagner for a helpful discussion.

Let D be the class of all conjugates of a and D_0 a finite subset of D such that D is contained in the definable class

$$B = \{ b \in \mathbb{C} \mid \mathbb{C} \models \theta(a_0, b) \text{ for some } a_0 \in D_0 \}.$$

The set of all types $p \in S(\emptyset)$ which can be realized by an element of $\mathbb{C} \setminus B$ is closed. Therefore the set Φ of all p with only realizations in B is open. Since $D \subset B$, Φ contains tp(a). Thus we find a $\phi \in tp(a)$ such that every p which contains ϕ can only be realized by elements of B.

Fix a $p \in \mathcal{S}(\emptyset)$ which contains ϕ . Choose a realization $b \in B$ and $a_0 \in D_0$ such that $\mathbb{C} \models \theta(a_0, b)$. Since a_0 has the same type as a we find a b' such that ab' has the same type as a_0b . Then b' realizes p and $\mathbb{C} \models \theta(a, b')$. This proves the Lemma.

Let R and S be two invariant relations on C. It is easy to see¹ that \overline{RS} is always contained in \overline{RS} . The converse inclusion is not generally true: Take as a model a set with a sequence of named elements $0, 1, 2, \ldots$ Take for R the set of all pairs $(0, 1), (0, 3), (0, 5), \ldots$ and for S the set of all pairs $(2, 0), (4, 0), (6, 0), \ldots$ Then \overline{RS} contains (0, 0) and \overline{RS} is empty.

Of course, R and S are not connected in the following sense:

Definition 4 Two invariant relation R and S are called connected if there is a complete type p over \emptyset such that both, R(x, y) and S(y, z), imply p(y).

EXAMPLE: Look at the group $G = \mathbb{R} \times \mathbb{R}$ with the lexicographical ordering. Forget everything except the ordering, addition with (1,0) and addition with (0,1). Define

$$R(x,y) \Leftrightarrow \bigvee_{n \in \omega} y < x + (0,n).$$

Since there is only one type over the empty set, R and R are connected. Also R is transitive, while

$$\overline{R}(x,y) \Leftrightarrow \bigwedge_{n \in \omega} y < x + (1,-n)$$

is not. Whence $\overline{R} \, \overline{R} \neq \overline{R} = \overline{RR}$.

Lemma 5 Assume the invariant relations R and S to be connected². Then

$$R\overline{S} \subset \overline{RS}\Theta \tag{1}$$

$$\overline{RS} \subset \Theta \overline{RS} \tag{2}$$

$$\overline{R}\overline{S} \subset \Theta \overline{RS}\Theta \tag{3}$$

 $^{^1\}mathrm{Note}$ that the product of two type–definable relations is again type–definable.

²For (1) (and similarly for (2)) we only need that the first components of all pairs in S realize the same type.

PROOF: We prove first (1). Assume $(R\overline{S})(a,c)$. Since $(\overline{RS} \Theta)(x,z')$ can be axiomatized

 $\{\exists z \, (\psi(x, z) \land \theta(z, z')) \mid \psi \in \overline{RS}, \, \theta \text{ thick}\}\$

we have to show that for all $\psi(x,z) \in \overline{RS}$ and all thick θ there is a c' such that $\overline{RS}(a,c')$ and $\theta(c',c)$. Let b be such that R(a,b) and $\overline{S}(b,c)$. If we apply Lemma 3 to $\operatorname{tp}(c/b)$ we obtain a formula $\phi(z,b)$ such that every type over b which realizes ϕ can be realized by an element c' which satisfies $\theta(c',c)$. Since $\overline{S}(b,c)$, and R and S are connected, there is a c' which realizes ϕ and satisfies S(b,c'). By the choice of ϕ we can choose c' in such a way that $\theta(c',c)$.

The proof of (2) is symmetrical.

(3) follows from (1) and (2):

$$\overline{R}\,\overline{S} \subset \overline{R}S\Theta \subset \Theta \overline{RS}\Theta = \Theta \,\overline{RS}\,\Theta$$

PROOF OF THEOREM 2: Fix a complete type. First we prove the theorem restricted to the type p. We restrict the the meaning of E_L , $\overline{E_L}$, Θ and E_{KP} the the realization set of p. We can then apply the last lemma. Since $\overline{E_L}\Theta$ is type–definable it suffices to prove that $\overline{E_L}\Theta$ is transitive.

We have by the lemma $E_L \overline{E_L} \subset \overline{E_L} \Theta$ and $\overline{E_L} E_L \subset \Theta \overline{E_L}$. This gives

$$\overline{\mathrm{E}_{\mathrm{L}}}\Theta\subset\overline{\mathrm{E}_{\mathrm{L}}}\mathrm{E}_{\mathrm{L}}\subset\Theta\overline{\mathrm{E}_{\mathrm{L}}}\subset\mathrm{E}_{\mathrm{L}}\overline{\mathrm{E}_{\mathrm{L}}}\subset\overline{\mathrm{E}_{\mathrm{L}}}\Theta$$

and all four terms are equal. Part (3) of the Lemma gives

$$\overline{E_L} \, \overline{E_L} \subset \Theta \overline{E_L} \Theta = \overline{E_L} E_L.$$

Whence $\overline{E_L}\Theta$ is transitive:

$$\overline{E_L}\Theta\overline{E_L}\Theta = \overline{E_L}\,\overline{E_L}E_L = \overline{E_L}E_L^2 = \overline{E_L}E_L = \overline{E_L}\Theta.$$

Now the general case: Let for every complete type $\overline{E_L(p)}$ be the closure of $E_L \cap p^2$, $\Theta(p) = \Theta \cap p^2$ and $E_{KP}(p)$ be the finest bounded type–definable equivalence relation on p. We have proved that

$$\overline{\mathrm{E}_{\mathrm{L}}(p)}\Theta(p) = \mathrm{E}_{\mathrm{KP}}(p).$$

Since $E_{KP}(p) = E_{KP} \cap p^2$ this implies

$$\bigcup_{p} \overline{\mathrm{E}_{\mathrm{L}}(p)} \,\Theta = \mathrm{E}_{\mathrm{KP}}.$$

But $\bigcup_{p} \overline{\mathrm{E}_{\mathrm{L}}(p)} \subset \overline{\mathrm{E}_{\mathrm{L}}}$ and the theorem is proved.