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1 Introduction

Let M be an L-structure and A be an infinite subset of M . Two structures can
be defined from A:

• The induced structure on A has a name Rϕ for every ∅–definable relation
ϕ(M) ∩An on A. Its language is

Lind = {Rϕ | ϕ = ϕ(x1, . . . , xn) an L–formula}.
A with its Lind–structure will be denoted by Aind.

• The pair (M,A) is an L(P )–structure, where P is a unary predicate for A
and L(P ) = L ∪ {P}.

We call A small if there is a pair (N,B) elementarily equivalent to (M,A) and
such that for every finite subset b of N every L–type over Bb is realized in N .

A formula ϕ(x, y) has the finite cover property (f.c.p) in M if for all natural
numbers k there is a set of ϕ–formulas

{ϕ(x,mi) | i ∈ I}
which is k–consistent1 but not consistent in M . M has the f.c.p if some formula
has the f.c.p in M . It is well known that unstable structures have the f.c.p. (see
[6].)

We will prove the following two theorems.

Theorem A Let A be a small subset of M . If M does not have the finite cover
property then, for every λ ≥ |L|, if both M and Aind are λ–stable then (M,A)
is λ–stable.

Corollary 1.1 (Poizat [5]) If M does not have the finite cover property and
N ≺M is a small elementary substructure, then (M,N) is stable.

Corollary 1.2 (Zilber [7]) If U is the group of roots of unity in the field C of
complex numbers the pair (C, U) is ω–stable.

Proof. (See [4].) As a strongly minimal set C is ω–stable and does not have the
f.c.p. By the subspace theorem of Schmidt [3] every algebraic set intersects U
in a finite union of translates of subgroups definable in the group structure of
U alone. Whence Uind is nothing more than a (divisible) abelian group, which
is ω–stable.

In [4] Pillay proved for strongly minimal M that (M,A) is stable whenever
A is stable. The smallness of A is not needed. We will give an account of Pillay
theorem in the last section of the paper (5.4).

Theorem B Let A be a small subset of M . If M is stable and Aind does not
have the finite cover property then (M,A) is stable.

1i.e. every k–element subset is consistent.
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In both cases the theory of (M,A) depends only on the theory2 of Aind: If B
is a small subset of N ≡ M and Bind ≡ Aind then (M,A) ≡ (N,B) (Corollary
2.2).

While theorem A may have been part of the folklore theorem B seems to be
new. It provides a new proof of the following theorem of Baldwin and Benedikt:

Corollary 1.3 (Baldwin–Benedikt [1]) If M is stable and I ⊂M is a small
set of indiscernibles, then (M, I) is stable.

This result has motivated our investigation. In section 2 our proof owes much
to their paper.

Let A be a small subset of M . In section 2 we relativize the f.c.p to the
(stronger) notion of the f.c.p over A and prove that every L(P )–formula is
equivalent to a bounded formula if M does not have the f.c.p over A. In section
3 we conclude from this that (M,A) is κ–stable if M and Aind are κ–stable.
This implies theorem A.

For theorem B we show that M does not have the f.c.p over A if M is stable
and A does not have the f.c.p (section 4). We do this using a simplified version
of Shelah’s proof of his f.c.p theorem (4.5 and 4.6).

We thank Jörg Flum for bringing the problem to our attention.

2Note that the theory of M can be read off from the theory of Aind.
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2 Bounded formulas

M has the f.c.p over A if there is a formula ϕ(x, α, y) such that for all k there
is a tuple m and a family (ai)i∈I of tuples from A such that the set

{ϕ(x, ai,m) | i ∈ I}

is k–consistent but not consistent in M . Note that if M has the f.c.p over A
and (N,B) is elementarily equivalent to (M,A), then N has the f.c.p over B.

An L(P )–formula Φ(x1, . . . , xm) is bounded if it has the form

Q1α1 ∈ P . . .Qnαn ∈ P ϕ(x1, . . . , xm, α1, . . . , αn),

where the Qi are quantifiers and ϕ is an L–formula.

Proposition 2.1 Let A be a small subset of M . If M ist stable and does not
have the finite cover property over A then in (M,A) every L(P )–formula is
equivalent to a bounded formula.

Proof. We show by induction on the number of quantifiers in ϕ that every
L(P )–formula ϕ is in (M,A) equivalent to a bounded one. The induction starts
with the observation that P (x) is equivalent to ∃α ∈ P α = x, which is bounded.
For the induction step we show that for all tuples x of variables and all bounded
Φ(x, y), the formula ∃yΦ(x, y) is equivalent to a bounded one.

Write
Φ(x, y) = Qα ∈ P ϕ(x, y, α),

where Qα ∈ P is a block

Q1α1 ∈ P Q2α2 ∈ P . . .

of bounded quantifiers and ϕ(x, y, α) belongs to L. Since M is stable for all
m,n from M there is an L–formula θ(α, β) and a parameter tuple b in A such
that

(M,A) |= ∀α ∈ P (ϕ(m,n, α) ↔ θ(α, b)).

Since this is also true in all (M ′, A′) which are elementarily equivalent to (M,A)
a compactness argument shows that there is a finite number of formulas θ which
serve for allm,n. We may assume that A has at least two elements, which allows
us to code everything in just one formula θ. This gives

(M,A) |= ∀xy ∃β ∈ P ∀α ∈ P (ϕ(x, y, α) ↔ θ(α, β)).

It follows easily that Φ(x, y) is equivalent in (M,A) to

∃β ∈ P (∀α ∈ P (ϕ(x, y, α) ↔ θ(α, β)) ∧Qα ∈ P θ(α, β)
)
.

Set ψ(x, y, α, β) := (ϕ(x, y, α) ↔ θ(α, β)). Since M does not have the f.c.p over
A, there is some k < ω such that for all m, b from M , the set

{ψ(m, y, a, b) | a ∈ A}
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is consistent if it is k-consistent. Now, A is small in M and this implies that
the following sentence holds in (M,A):

∀xβ
((∀α0 ∈ P . . . ∀αk−1 ∈ P ∃y

∧

i<k

ψ(x, y, αi, β)
) → ∃y ∀α ∈ P ψ(x, y, α, β)

)
.

Hence ∃yΦ(x, y) is equivalent to the bounded formula

∃β ∈ P
((∀α0 ∈ P . . . ∀αk−1 ∈ P ∃y

∧

i<k

ψ(x, y, αi, β)
) ∧Qα ∈ P θ(α, β)

)
.

This proves the proposition. 2

Corollary 2.2 Let M and A be as in 2.1. If B is a small subset of N ≡ M
and Bind ≡ Aind then (M,A) ≡ (N,B)

Proof. We know that both in (M,A) and in (N,B) every L(P )–sentence is
equivalent to a bounded one. The obtainment of the bounded equivalent for
a given L(P )–sentence depends on a finite number of choices, the choice of
the formulas θ(α, γ) and the choice of the numbers k < ω associated to the
failure of the relativized f.c.p. These choices can be different in (M,A) and in
(N,B). But it is clear that in each case we can make a common choice for both
structures: For θ we take a formula which codes the two formulas θ’s which
serve for (M,A) and (N,B) respectively, and for k we take the maximum of
both k′s. Therefore we have a uniform procedure in (M,A) and (M,B) to
obtain a bounded equivalent of each L(P )–sentence. But bounded sentences
speak only about the induced structure of A and B respectively.

The reader may note that the corollary implies that the bounded formulas of
proposition 2.1 can be chosen to depend only on the theory of Aind. 2
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3 The Stability of (M, A)

We fix an L–structure M and a subset A.

Proposition 3.1 If in (M,A) every L(P )–formula is equivalent to a bounded
formula, then for every λ ≥ |L|, if both M and Aind are λ–stable then (M,A)
is λ–stable.

Before giving the proof of the proposition we need some lemmas. We say
that a mapping f between two subset of M is bounded if it preserves all bounded
formulas.

Lemma 3.2 If f is an L–elementary mapping and extends a permutation of
A, then f is bounded.

Proof. Left to the reader. 2

Lemma 3.3 Assume M is stable and Aind is saturated. Let B,C be subsets of
M and let B0 = B ∩ A and C0 = C ∩ A. Assume |B0|, |C0| < |A|, and that
tp(B/A) is the only non-forking extension of tp(B/B0) to A and tp(C/A) is the
only non-forking extension of tp(C/C0) to A. If f : B → C is an L–elementary
mapping such that f(B0) = C0, and f ¹ B0 is bounded, then f is bounded.

Proof. Since f ¹ B0 preserves bounded formulas, it is elementary in A and can be
extended to an automorphism g of Aind, i.e, to an L-elementary permutation of
A. Since tp(B/A)g is the only non-forking extension of tp(B/B0)g = tp(C/C0)
to g(A) = A, we see that tp(B/A)g = tp(C/A). This means that f ∪ g is L-
elementary. By Lemma 3.2 f ∪ g is bounded. 2

We define the bounded type of a tuple m over B to be the set tpb(m/B) of
all bounded formulas over B which are satisfied by m.

Proof of Proposition 3.1.

Let B be a set of cardinality λ. We show that there are ≤ λ bounded
types over B. Since Aind is stable we may assume that Aind is saturated and
|B| < |A|3 Extending B if necessary we may assume that tp(B/A) is the only
non-forking extension of tp(B/B0) to A, where B0 = A∩B. Also, without loss
of generality, (M,A) is λ+–saturated.

Let T be the complete theory of M . For each b ∈ M , choose a sequence b0
of length < κ(T ) (4) in A such that tp(b/BA) does not fork over over Bb0. It
follows that tp(bB/A) does not fork over B0b0.

3Choose a suitable cardinal κ > λ such that Th(Aind) is κ–stable and (M,A) has a special
extension (M ′, A′) of cardinality κ. Since then Th(Aind) has a saturated model of cardinality
κ, A′ind is must be saturated.

4κ(T ) is the smallest cardinal κ with the property that in models of T every type tp(b/B)
does not fork over some B0 ⊂ B with fewer than κ elements. κ(T ) is bounded by |T |+.
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Claim For any sequence d of length < κ(T ) in A there are at most λ many
bounded types over B of tuples b such that tpb(b0/B0) = tpb(d/B0) and tp(b0/B)
= tp(d/B).

Proof. Let tp(b0/B) = tp(d/B) and tpb(b0/B0) = tpb(d/B0). This implies that
the mapping f which is the identity on B and transforms b0 in d is L–elementary
and, restricted to B0b0, is bounded.

Observe that tp(Bb0/A) is the only non-forking extension of tp(Bb0/B0b0) to
A and that tp(Bd/A) is the only non-forking extension of tp(Bd/B0d) to A.
By Lemma 3.3 f is bounded, and therefore tpb(b0/B) = tpb(d/B). Since in
(M,A) every L(P )–formula is equivalent to a bounded one, these are complete
L(P )–types over B and we can find b′ ∈M such that

tpb(b′d/B) = tpb(bb0/B).

This implies that tp(b′/BA) does not fork over Bd since tp(b/BA) does not
fork over Bb0. By Lemma 3.2 the bounded type tpb(b′/Bd) is determined by
tp(b′/AB). But each type tp(b′/Bd) has at most λ many non-forking extensions
to AB. (Multiplicities are bounded by λ if T is stable in λ and λ ≥ |L|.) And
since there are at most λ many types tp(b′/Bd), the claim is proved.

By the claim we have to show that λ is a bound for both

• the number of all types tp(d/B)

• the number of all bounded types tpb(d/B0)

where d ranges over all tuples of length < κ(T ) from A. Since M is stable in λ,
λ<κ(T ) = λ. This shows that it is enough to bound the number of types of single
elements. But now λ bounds the number of the tp(d/B) since T is λ–stable and
the number of the tpb(d/B0) (d ∈ A) since Aind is λ–stable. 2

We conclude

Theorem A
Let A be a small subset of M . If M does not have the finite cover property and
A is stable then (M,A) is stable.

7



4 Proof of Theorem B

Let again M be an L–structure with an infinite subset A.

By Shelah’s f.c.p–theorem (Theorem II.4.3 in [6]) M does not have the f.c.p
iff M is stable and for every φ(x, y, z) there is a bound l such that whenever
φ(x, y,m) defines an equivalence relation with more than l classes then there
are infinitely many classes.

We call M to be stable over A if in every (N,B) elementarily equivalent to
(M,A) every type over B is definable by a bounded formula with parameters
from B. Clearly, if M is stable, it is stable over every subset A.

We show here that if M is stable over A and if Aind does not have the f.c.p,
then M does not have the f.c.p over A. We will also see (in a remark after
Corollary 4.4) that conversely M being unstable over A implies the f.c.p over
A.

Let ϕ = ϕ(x, y) be in L and C a subset of M . A ϕ–formula over C is a
formula of the form ϕ(x, c) where c is a tuple in C. A ϕ–type over C is a maxi-
mally consistent set of ϕ–formulas and negated ϕ–formulas over C. We denote
by Sϕ(C) the set of all ϕ–types over C.

Lemma 4.1 If M is stable over A, for every bounded formula Φ(x, α) there is
a bounded Θ(α, β) such that

(M,A) |= ∀x∃β ∈ P ∀α ∈ P (Φ(x, α) ↔ Θ(α, β)).

Proof. Let Φ(x, α) = Q1γ1 ∈ P . . .Qnγn ∈ P ϕ(x, α, γ) where γ = γ1, . . . , γn,
each Qi is a quantifier and ϕ(x, α, γ) ∈ L. By definability of types over A,
for each tuple m ∈ M there exists a bounded formula Ψ(α, β, γ) and some
b ∈ A such that Ψ(α, b, γ) defines the ϕ–type of m over A, that is, for all
a, c ∈ A, (M,A) |= ϕ(m, a, c) ↔ Ψ(a, b, c). By compactness there is a finite set
of bounded formulas such that for each m ∈M the ϕ-type of m over A can be
defined by a formula in this set using some parameter b ∈ A. This finite set
can be reduced to a single formula by the usual trick (see [6], Lemma II.2.1).
Hence there is a fixed bounded Ψ(α, β, γ) such that for all m ∈M there is some
b ∈ A such that for all a, c ∈ A, (M,A) |= ϕ(m, a, c) ↔ Ψ(a, b, c). We put
Θ(α, β) := Q1γ1 ∈ P . . .Qnγn ∈ P Ψ(α, β, γ). 2

Before entering the proof of Proposition 4.6, we need a relativized version
of Shelah’s ϕ–rank. Assume (M,A) is ω–saturated, let ϕ(x, α, y) ∈ L, and m
a tuple in M . Working in Th(M,m) we can consider ϕ(x, α,m)–types over A,
which are maximal consistent sets of formulas (¬)ϕ(x, a,m) with parameters
a ∈ A. Let Sϕ(x,α,m)(A) be the boolean space of all ϕ(x, α,m)–types over A.
The rank

RAϕ,m(ψ(x))

is the Cantor–Bendixson rank of the closed subspace

{q ∈ Sϕ(x,α,m)(A) | q is consistent with ψ}.
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The multiplicity MltAϕ,m(ψ(x)) is defined as the Cantor–Bendixson degree of this
space. Note that RMϕ,m is Shelah’s ϕ–rank.

If (M,A) is not ω–saturated, we compute RAϕ,m in an ω–saturated elementary
extension (M ′, A′). It is easy to see that this rank does not depend on the choice
of (M ′, A′).

The next lemma is easy. But it is this lemma which allows us to give a short
proof of Lemma 4.5.

Lemma 4.2 Assume (M,A) is ω-saturated. Let m be a tuple of elements of M ,
ψ(x) an L–formula with parameters from M and n a natural number. Then:

1. RAϕ,m(ψ) ≥ n+1 if and only if there is a family (ai)i<ω in A such that for
all i < j < ω

RAϕ,m
(
ψ(x) ∧ (ϕ(x, ai,m)∆ϕ(x, aj ,m))

) ≥ n. (5)

2. Let RAϕ,m(ψ) = n and let Mlt′Aϕ,m(ψ) be the biggest k < ω for which there
exist a0, . . . , ak−1 in A such that for all i < j < k

RAϕ,m
(
ψ(x) ∧ (ϕ(x, ai,m)∆ϕ(x, aj ,m))

) ≥ n.

Then MltAϕ,m(ψ) ≤ 2Mlt′Aϕ,m(ψ) and Mlt′Aϕ,m(ψ) ≤ 2MltA
ϕ,m(ψ).

Proof. Let X be the space of all ϕ(x, α,m)–types over A which are consistent
with ψ and X(n) the set of all elements of X of Cantor-Bendixson at least n.
Let χ(x) be a boolean combination of ϕ(x, α,m)–formulas over A. Then

X = {p ∈ X | p ` χ} ∪ {p ∈ X | p ` ¬χ}

is a clopen partition of X. This implies

RAϕ,m(ψ ∧ χ) ≥ n iff p ` χ for some p ∈ X(n).

Define on (a suitable power of) A the binary relation

a1 ∼ a2 iff Rϕ,m
(
ψ(x) ∧ (ϕ(x, a1,m)∆ϕ(x, a2,m))

)
< n.

From the last observation follows that

a1 ∼ a2 iff {p ∈ X(n) | ϕ(x, a1,m) ∈ p} = {p ∈ X(n) | ϕ(x, a2,m) ∈ p},

which implies that

• ∼ is an equivalence relation in A,

• a/∼ is determined by the set of all p ∈ X(n) which contain ϕ(x, a,m),

• p ∈ X(n) is determined by the set of all a/∼ where ϕ(x, a,m) ∈ p.
5We write (ϕ∆ψ) for the formal symmetric difference ¬(ϕ↔ ψ).
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Whence X(n) is infinite iff ∼ has infinitely many classes, which is the content
of 1.

If RAϕ,m(ψ) = n we have Mlt′Aϕ,m(ψ) = |A/∼| and Mltϕ,m(ψ) = |X(n)|, which
implies 2. 2

The following lemma can be proved like Theorem II.2.2 and Theorem II.2.13
in [6].

Lemma 4.3 The following are equivalent.

1. M is stable over A.

2. For some cardinal number λ there are at most λ types over B for every B
and N such that (N,B) ≡ (M,A) and |B| ≤ λ.

3. The following does not exist: A model (N,B) ≡ (M,A), an L–formula
ϕ(x, α), a family (mi)i<ω of elements of N and a family (ai)i<ω of ele-
ments of B such that for all i, j

N |= ϕ(mi, aj) iff i < j.

4. For all ψ, ϕ, RAϕ (ψ) < ω. 2

From condition 3. of this lemma it is clear that M is stable over A iff (M,m)
is stable over A. Hence:

Corollary 4.4 M is stable over A if and only if RAϕ,m(ψ) < ω for all ψ, ϕ and
m. Furthermore, if M is stable over A, RAϕ,m(ψ) can be bounded by a number
which depends only on ϕ.

Proof. Only the second part of the assertion deserves a demonstration. If a for-
mula ϕ = ϕ(x, α, y) is given, we denote by ϕ′ the same formula, but considered
as a formula in two sets of variables, xy and α. It is easy to see that for all
φ = ψ(x, y) and all m

RAϕ,m(ψ(x,m)) ≤ RAϕ′(ψ(x, y)).

This shows that RAϕ′(true) is the desired bound. 2

One can easily see that if M does not have the f.c.p over A, M is stable over
A: In the same way as the presence of a formula with the order property gives
the finite cover property, a formula ϕ(x, α) with the order property “over” A
gives the finite cover property over A.

Lemma 4.5 Assume M is stable over A and Aind does not have the f.c.p. Then
the relativized rank is definable: Let the L–formulas ϕ(x, α, y) and ψ(x, β, z) be
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given and let k be a natural number . Then there is a bounded Θ(β, γ) such that
for all m,n ∈M there is a c ∈ A such that for all b ∈ A

RAϕ,m(ψ(x, b, n)) = k iff (M,A) |= Θ(b, c).

Moreover there is a bound l < ω for the multiplicity. That is, for all m,n ∈M
and all b ∈ A

MltAϕ,m(ψ(x, b, n)) < l.

Proof. We may assume that (M,A) is ω–saturated. It is enough to show that
we can find a bounded Θ(β, γ) which defines “rank ≥ k”.

First consider the case k = 0. We have RAϕ,m(ψ(x, b, n)) ≥ 0 if and only if
M |= ∃xψ(x, b, n). Choose Θ(β, γ) with Lemma 4.1 such that

(M,A) |= ∀z ∃γ ∈ P ∀β ∈ P (∃xψ(x, β, z) ↔ Θ(β, γ)).

Assume now inductively that we can define “rank≥ k” and let ψ(x, β, z) ∈ L.
Given m,n ∈M and b ∈ A, consider the following relation on tuples of A:

a1 ≡ a2 (mod m,n, b) iff RAϕ,m(ψ(x, b, n) ∧ (ϕ(x, a1,m)∆ϕ(x, a2,m))) < k.

It is an equivalence relation and by the inductive hypothesis there is a bounded
formula Φ(α1, α2, β, γ) such that for all m,n ∈ M there exists c ∈ A such that
for all a1, a2, b ∈ A,

a1 ≡ a2 (mod m,n, b) iff (M,A) |= Φ(a1, a2, b, c).

From this follows that, since Aind does not have the finite cover property, there
is some l < ω such that for all m,n ∈ M and all b ∈ A, if equivalence modulo
(m,n, b) has more than l equivalence classes on A, it has infinitely many. In
this case the condition RAϕ,m(ψ(x, b, n)) ≥ k + 1 is equivalent to

∃α0 ∈ P . . . ∃αl ∈ P
∧

i<j≤l
¬αi ≡ αj (mod m,n, b).

Observe that the l above bounds the multiplicity in rank k. 2

Proposition 4.6 If M is stable over A and if Aind does not have the f.c.p then
M does not have the f.c.p over A.

Proof. Let ϕ = ϕ(x, α, y) ∈ L be given. By Corollary 4.4 there is a number k0

such that RAϕ,m(x = x) < k0 for all m. By Lemma 4.5 this rank is definable and
for every ψ(x, z) there is a bound for the ϕ-multiplicity of ψ-formulas.

We show by induction on k the following: For each k and each ψ(x, z)
there is a bound N such that for all m and n in M the following is true: If
RAϕ,m(ψ(x, n)) = k and Σ(x) is a set of ϕ(x, α,m)–formulas over A such that
{ψ(x, n)} ∪ Σ(x) is inconsistent then there is a subset Σ0 ⊂ Σ of at most size
N such that {ψ(x, n)} ∪ Σ0(x) is inconsistent. Applied to all k below k0 and
x = x this implies the proposition.
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The induction starts with the trivial case k = −1, where N = 0 suffices.
Now suppose the claim is true for all k′ < k.

Let l be a bound for the ϕ–multiplicity of ψ–formulas. This means that for all
m and n MltAϕ,m(ψ(x, n)) ≤ l. Now, if {ψ(x, n)} ∪ Σ(x) is inconsistent, there
must be a formula ϕ(x, a1,m) ∈ Σ(x) such that ψ(x, n)∧ϕ(x, a1,m) has either
a smaller rank than ψ(x, n) or a smaller multiplicity. If the rank remains the
same we continue and find a ϕ(x, a2,m) ∈ Σ(x) such that ψ(x, n)∧ϕ(x, a1,m)∧
ϕ(x, a2,m) has smaller rank or smaller multiplicity.

This process must stop after at most l steps when we have found formulas
ϕ(x, a1,m), . . . , ϕ(x, al,m) in Σ(x) such that the conjunction

ψ′(x,m, n, a1, . . . , al) = ψ(x, n) ∧ ϕ(x, a1,m) ∧ . . . ∧ ϕ(x, al,m)

has a ϕ(x, α,m)–rank k′ which is smaller than k. By induction there is a bound
N ′ attached to k′ and ψ′(x, y, z, u1, . . . , ul). Then N = l + N ′ is the desired
bound for k and ψ(x, z). 2

Theorem B
Let A be a small subset of M . If M is stable and Aind does not have the finite
cover property then (M,A) is stable.

Proof. If M is stable it is also stable over A. By 4.6 M does not have the f.c.p
over A. By 2.1 every L(P )–formula is equivalent to a bounded formula. Aind,
not having the f.c.p, is stable. Thus (M,A) is stable by 3.1. 2
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5 Further results

A look at the proof of Proposition 4.6 shows that actually something stronger
was proved.

Lemma 5.1 Assume M is stable over A ⊂M . If M has the f.c.p over A, then
there is some bounded Ψ(α1, α2, β) and a family of parameters (bi)i<ω in A such
that

1. For every b ∈ A, Ψ(α1, α2, b) defines an equivalence relation on tuples of
A.

2. For each i < ω, Ψ(α1, α2, bi) has more than i but only finitely many equiv-
alence classes.

Proof. By the hypothesis and the proof of 4.6 the relativized rank is not de-
finable. The proof of 4.5 shows that this implies that the conclusion holds.
Actually the formula Ψ constructed in the proof of 4.5 contains a parameter c
from A, but c can be incorporated in the parameters b. 2

The converse of Lemma 5.1 is not true. Take a structure M with an equiv-
alence relation which has infinitely many classes all of which are infinite. Let
A be a subset of M which has finite intersection with each class, in such a way
that for each n there is a class which intersects A in more than n elements. M
does not have the f.c.p, Aind is stable and has the f.c.p.

The next three propositions give an alternative proof of 2.1.

Proposition 5.2 Let A be a small subset of M and (M,A) be |L|+–saturated.
Then M not having the f.c.p over A implies that, for every finite tuple m from
M , every type over Am is realized in M .

Proof. Assume that M does not have the f.c.p over A and let p(x) be a type
over Am. We prove first that for all ϕ(x, α, y) the ϕ(x, α,m)–part

pϕ(x,α,m) = {(¬)ϕ(x, a,m) | (¬)ϕ(x, a,m) ∈ p}

of p is realized in M . Let θ(α, b) (for some b ∈ A) define the ϕ(x, α,m)–part.
This means that pϕ(x,α,m) is equivalent to

Φm,b = {ϕ(x, a,m) ↔ θ(a, b) | a ∈ A, (M,A) |= θ(a, b)}

Now argue as in the proof of 2.1. Since M does not have the f.c.p over A the
fact that a consistent set of this form is always realized is expressible by an
L(P )–sentence, which is true since A is small.

Choose a realization cϕ of pϕ(x,α,m) for all ϕ. Then use the |L|+–saturation of
(M,A) and realize the set

{∀α ∈ P (
ϕ(x, α,m) ↔ ϕ(cφ, α,m)

) | ϕ an L–formula}.
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We do not know if the non–f.c.p over A can be characterized by this con-
dition. But note that the conclusion of the proposition implies the equivalent
conditions of 5.3.

Proposition 5.3 Let M be stable over A ⊂ M . Then the following are equiv-
alent.

1. Every L(P )–formula is in (M,A) equivalent to a bounded formula.

2. If (N,B) ≡ (M,A), every elementary mapping in N extending a permu-
tation of B is elementary in (N,B).

3. Let (N,B) ≡ (M,A) be |L|+–saturated and let h be an elementary mapping
in N which is a finite extension of a permutation of B. Then for every
a ∈ N there is b ∈ N such that h ∪ {(a, b)} is elementary in N .

Proof. By Lemma 3.2 it is clear that 1. implies 2.

To show that 3. follows from 2. we write h = f ∪ {(m,n)} where f is a
permutation of B and m,n are tuples in N . Let a ∈ N be given.

We prove first that for each ϕ(x, y, γ) ∈ L there is a bϕ ∈ N such that for each
c ∈ B,

(N,B) |= ϕ(a,m, c) iff (N,B) |= ϕ(bϕ, n, f(c)).

Let Θ(α, γ) ∈ L(P ) and d ∈ B be such that Θ(d, γ) is a definition of the ϕ-type
of am over B, that is,

(N,B) |= ∀γ ∈ P (ϕ(a,m, γ) ↔ Θ(d, γ)).

Hence
(N,B) |= ∃x∀γ ∈ P (ϕ(x,m, γ) ↔ Θ(d, γ)).

By 2. h is elementary in L(P ) and therefore for some bϕ ∈ N ,

(N,B) |= ∀γ ∈ P (ϕ(bϕ, n, γ) ↔ Θ(f(d), γ)).

Clearly bϕ is as required.

Since we can code a finite sequence of formulas ϕ = ϕ1, . . . , ϕk in one, we find
for each such sequence a bϕ such that for each i and c ∈ B,

(N,B) |= ϕi(a,m, c) iff (N,B) |= ϕi(bϕ, n, f(c)).

This shows that the set
{
ϕ(x, n, f(c)) ↔ ϕ(bϕ, n, f(c))

∣∣ ϕ(x, y, γ) ∈ L, c ∈ B}

is finitely satisfiable. Since (N,B) is |L|+-saturated the set is realized by some
b ∈ B.

If 3. is true the system of elementary mappings which are finite extensions of
permutations of B is a back and forth system, which shows that these mappings
preserve L(P )–formulas. This proves that 3. implies 2.
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We prove finally that 2. implies 1. Assume that (N,B) ≡ (M,A) and m,m′

are tuples in N such that m satisfies the same bounded formulas as m′. We
obtain an |L|+–saturated elementary extension (N ′, B′) of (N,B) and an ele-
mentary permutation h of B′ such that h(m) = m′. By 2. h preserves L(P )–
formulas. Whence m and m′ satisfy the same L(P )–formulas. 2

Since 3. is true for strongly minimal N , we conclude

Corollary 5.4 (Pillay [4]) Let M be strongly minimal and A an arbitrary sub-
set of M . Then every L(P )–formula is in (M,A) equivalent to a bounded for-
mula. If Aind is stable then also (M,A) is stable.

The corollary can also be proved in the style of 2.1. There are two cases: If A is
small the result follows directly from 2.1. If A is not small then M is algebraic
over A in a definable manner. In this case one uses a variant of the proof of 2.1.

For A an elementary substructure of M the next proposition follows from
Théorème 4 in [5].

Proposition 5.5 For i = 1, 2, let Mi be stable and Ai a subset of Mi such that
(Ai)ind is |L|+–saturated. Assume also that for every finite f ⊂ Mi every type
over Aif is realized in Mi. If (A1)ind ≡ (A2)ind, then (M1, A1) ≡ (M2, A2).

Proof. Let I be the set of all partial isomorphisms of the form {(a, b)} where
a, b are tuples in M1,M2 respectively such that tp(aa0) = tp(bb0) and tpb(a0) =
tpb(b0) for some sequence a0 of length ≤ |L| in A1 such that tp(a/A1) is the
only nonforking extension of tp(a/a0) to A1 and some sequence b0 of length
≤ |L| in A2 such that tp(b/A2) is the only nonforking extension of tp(b/b0) to
A2.

We claim that I is a back and forth system between (M1, A1) and (M2, A2).
From this it will follow that these models are elementarily equivalent. We check
first that every {(a, b)} ∈ I is a partial isomorphism between (M1, A1) and
(M2, A2). Let a = a1, . . . , an and b = b1, . . . , bn. It suffices to show that for
each i = 1, . . . , n, bi ∈ A2 if ai ∈ A1. Choose sequences a0, b0 for a, b as in
the definition of I. Suppose ai ∈ A1. By |L|+–saturation of (A2)ind there is
an a′i ∈ A2 such that tpb(a0ai) = tpb(b0a′i). Let f be an elementary mapping
taking a0ai onto b0a

′
i. Since tp(a/a0ai)f is the only nonforking extension of

tp(a/a0)f = tp(b/b0) to b0a′i, it must coincide with tp(b/b0a′i). Hence bi = a′i ∈
A2.

By symmetry it is now enough to show that if {(a, b)} ∈ I and c is an ele-
ment of M1 we can find an element d of M2 such that {(ac, bd)} ∈ I. Choose
a0 and b0 for a and b as in the definition of I and let c′ be a sequence of length
≤ |L| in A1 such that tp(c/A1a) is the only nonforking extension of tp(c/c′a)
to A1a. Hence tp(ac/A1) is the only nonforking extension of tp(ac/a0c

′) to A1.
Since tpb(a0) = tpb(b0), by |L|+–saturation of (A2)ind we can find a sequence
d′ in A2 such that tpb(a0c

′) = tpb(b0d′). As above, tp(aa0c
′) = tp(bb0d′). Let f

be an elementary mapping taking aa0c
′ onto bb0d′ and let p(x) be a nonforking

extension of tp(c/aa0c
′)f to A2b. By assumption there is some realization d of

p in M2. It is clear that tp(ac) = tp(bd) and that tp(bd/A2) is a nonforking

15



extension of tp(bd/b0d′). Now we show that in fact it is the only nonforking ex-
tension of tp(bd/b0d′) to A2. This will imply that {(ac, bd)} ∈ I. Since tp(b/A2)
is the only nonforking extension of tp(b/b0) to A2, we only have to prove that
tp(d/b0d′) has at most one nonforking extension to A2b. Assume that, on the
contrary, for some finite sequence e in A2, tp(d/b0d′) has two nonforking exten-
sions to b0d′eb. By |L|+–saturation of (A1)ind there is some f in A1 such that
tp(a0c

′f) = tp(b0d′e). Hence tp(aa0c
′f) = tp(bb0d′e), and this implies that

tp(c/a0c
′) has two nonforking extensions to a0c

′fa, a contradiction. 2

For indiscernible A the next proposition is contained in [1].

Proposition 5.6 Assume that M is stable, A is small, Aind does not have the
f.c.p and that (M,A) is saturated. Then every L–elementary permutation of A
extends to an automorphism of M .

Proof. If f : A → A is an L–elementary permutation it preserves bounded
formulas. By 2.1 f preserves all L(P )–formulas. Since (M,A) is stable and
saturated f extends to an automorphism.

For A ≺M the next proposition was proved in [5].

Proposition 5.7 If M does not have the f.c.p, A ⊂ M is small and if Aind

does not have the f.c.p, then (M,A) does not have the f.c.p.

Proof. Let T be the theory of M , T ′ the theory of (M,A) and let T ′′ be the
theory of all beautiful pairs of T ′ in the sense of [5]. Hence T ′′ is the theory of
all models (M2, A2,M1, A1) where (M2, A2) |= T ′, (M1, A1) is a |L|+–saturated
elementary substructure of (M2, A2) and for each finite f ⊂ M2, each L(P )–
type over M1f is realized in (M2, A). The predicate P is interpreted as the
set A2 in the structure (M2, A2,M1, A1) and we have a new unary predicate Q
to be interpreted as the set M1. The set A1 is given only as the intersection
of M1 with A2. Since T ′ is stable, we can apply Theorem 6 of [5] to show
that T ′ does not have the f.c.p. We have to prove that in every |L|+–saturated
model (M2, A2,M1, A1) of T ′′ for every finite m ⊂ M2 every L(P )–type over
M1m is realized in (M2, A2). Let p(x) be an L(P )–type over M1m. Let a be
a realization of p(x) in an elementary extension (M3, A3) of (M2, A2). We will
find some b ∈M2 with the same L(P )–type over M1m as a.

We can assume (M3, A3) is |L|+–saturated. By Proposition 5.2 for every
finite f ⊂ M3, every L–type over A3f is realized in M3 and for every finite
f ⊂M2, every L–type over A2f is realized in M2. By this and by the stability
of M3 and M2 we can use the back and forth system presented in the proof of
Proposition 5.5 to determine equality of L(P )–types of tuples in (M3, A3) and
in (M2, A2): if we find Y ⊂ A3, Z ⊂ A2 and b ∈ M2 such that tp(M1ma/A3)
is the only nonforking extension of tp(M1ma/Y ) to A3, that tp(M1mb/A2) is
the only nonforking extension of tp(M1mb/Z) to A2, that tpb(Y ) = tpb(Z) and
that tp(M1maY ) = tp(M1mbZ), then we can conclude that M1ma and M1mb
have the same L(P )–type and hence that b realizes p(x).

We start by choosing U ⊂ A2rA1 of cardinality≤ |L| such that tp(m/M1A2)
is the only nonforking extension of tp(m/M1U) to M1A2. Observe that the fact
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that (M1, A1) ≺ (M2, A2) implies that tp(M1/A2) is the only nonforking exten-
sion of tp(M1/A1) to A2 and hence that tp(M1m/A2) is the only nonforking
extension of tp(M1m/A1U) to A2. From this it follows also that tp(M1m/A3)
is the only nonforking extension of tp(M1m/A1U) to A3. Let V ⊂ A3 be an
extension of U of cardinality ≤ |L| and such that tp(a/M1mA3) is the only
nonforking extension of tp(a/M1mA1V ) to M1mA3. Then tp(M1ma/A3) is the
only nonforking extension of tp(M1ma/A1V ) to A3. We claim that we can find
a realization V ′ of tpb(V/A1U) in (M2, A2). Note that (A2, A1) is a model of
the theory of all beautiful pairs of the theory of A2 and that it is |L|+–saturated.
Since (A2)ind does not have the f.c.p, by Theorem 6 of [5] for every finite f ⊂ A2

every type over A1f is realized in A2. By |L|+–saturation of (A2, A1) this is also
true for types in |L| variables over A1W for any W ⊂ A2 of cardinality ≤ |L|.
Hence every bounded type over A1U in |L| variables is realized in (M2, A2) and
we can choose V ′ ⊂ A2 as claimed above.

The next step is to observe that for every finite f ⊂M2, every L–type over
M1A2f is realized in M2. Clearly it is enough to show that for each ϕ(x, y) ∈ L
we can realize in M2 each ϕ–type q(x) over M1A2f . Let θ(w, y) ∈ L and c ∈M2

be such that θ(c, y) is a definition of q(x), let κ = |M2| + |A2| and let N be
a κ+–saturated elementary extension of M2. By Proposition 5.5 (N,A2) is an
elementary extension of (M2, A2). By choice of N , for each finite g ⊂ N the ϕ–
type over M2A2g defined by θ(c, y) is realized in N . This fact can be expressed
in the language L(P )∪ {Q} and hence the ϕ–type q(x) over M1A2f defined by
θ(c, y) is realized in M2.

Since V and V ′ have the same type over A1U and tp(M1m/A1U) has only
one nonforking extension to A3 we can conclude that tp(M1V m) = tp(M1V

′m).
Thus we can choose b ∈ M2 such that tp(M1V

′mb) = tp(M1V ma) and b
is independent from M1A2m over M1V

′m. Also, since A1V and A1V
′ have

the same bounded type, tp(M1mb/A2) is the only nonforking extension of
tp(M1mb/A1V

′) to A2 and from this it follows that M1mb and M1ma have
the same L(P )–type. 2

If M is stable, A ⊂ M small and Aind does not have the f.c.p, the next
proposition implies that every L(P )–formula is equivalent to a bounded formula
of the type indicated below. For elementary submodels this is due to Bouscaren
and Poizat [2].

Proposition 5.8 If M is stable over A every bounded formula is equivalent to
a boolean combination of bounded formulas of the form

∃α1 ∈ P . . . ∃αn ∈ P
(
ϕ(x, α1, . . . , αn) ∧ Φ(α1, . . . , αn)

)
,

where ϕ is in L and Φ is bounded.

Proof. Let p be a (complete) type over A and ϕ(x, α) be an L–formula. We
define RAϕ (p) as the minimal rank RAϕ (ψ) of a formula ψ in p. Since every formula
is equivalent to disjunction of formulas with relative ϕ–multiplicity 1 one can
find a ψp,ϕ ∈ p such that

RAϕ (p) = RAϕ (ψp,ϕ) and MltAϕ (ψp,ϕ(x)) = 1.
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If B is a subset of A and if ψp,ϕ is over B for all ϕ we call B a base of p. If B
is a base of p, p is the only extension of p ¹ B to A with the same ϕ–ranks for
all ϕ since

θ(x, a) ∈ p⇐⇒ RAθ (θ(x, a) ∧ ψp,θ(x)) = RAθ (p).

Let (M,A) be |L|+–saturated. We have to show that two finite tuples b and
c from M satisfy the same bounded formulas whenever they satisfy the same
formulas of the type described in the proposition. For this we choose a basis B
of tp(b/A) of cardinality ≤ |L|. The assumption implies that there is a subset
C of A such that tpb(B) = tpb(C) and tp(bB) = tp(cC).

Fix an L–formula ϕ(x, α) and let p denote tp(b/A). Write ψp,ϕ as ψ(x, b′) for
an L–formula ψ(x, β). Let c′ be the tuple in C which corresponds to b′. Then
ψ(x, c′) belongs to tp(c/A), has the same relative ϕ–rank as p and multiplicity
1. It follows that RAϕ (tp(c/A)) ≤ RAϕ (tp(b/A)) and, by symmetry,

RAϕ (tp(c/A)) = RAϕ (tp(b/A)).

Whence tp(c/A) is the only extension of tp(c/C) to A with the same ϕ–ranks
as tp(c/C).

If Aind were saturated we could use the reasoning of the proof of Lemma 3.3 to
see that tpb(bB) = tpb(cC). But |L|+–saturation of Aind suffices: If B′ ⊂ A
and C ′ ⊂ A are two extensions of B and C which have the same bounded type
then tp(bB′) = tp(cC ′). Hence the system of all maps f : B′ ∪ {b} → C ′ ∪ {c}
where

• B′ and C ′ are contained in A and at most of cardinality |L|,
• f maps B to C and preserves the respective enumerations,

• f is bounded on B′

• f(b) = c

is a back and forth system, which implies that all f are bounded. This implies
tpb(bB) = tpb(cC). 2
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