
An exposition of the compactness of L(Qcf)

Enrique Casanovas and Martin Ziegler∗

March 24, 2019

Abstract

We give an exposition of the compactness of L(Qcf), for any set C
of regular cardinals.

1 Introduction

We present here a new and short exposition of the proof of the compactness
of the logic L(Qcf

C ), �rst-order logic extended by the co�nality quanti�er
Qcf
C , where C is a class of regular cardinals. The logic and the proof of

compactness are due to S. Shelah. The Compactness Theorem was stated
and proved in [7], but this article is not self-contained and some fundamental
steps of the proof must be found in the earlier article [6]. The interested
reader consulting these two articles will soon realise that the structure of the
proof is not completely transparent and that to fully understand the details
requires a lot of work.

The most popular case of the co�nality quanti�er is the logic L(Qcf
ω ) of the

quanti�er of co�nality ω, that is, C = {ω}. Our motivation comes from the
application of L(Qcf

ω ) in [1] to an old problem on expandability of models. An
anonymous referee of a preliminary version of [1] did not accept the validity
(in ZFC) of the compactness proof presented in [7], apparently confused by
the assumption of the existence of a weakly compact cardinal made at the
beginning of the article. The assumption only applies to a previous result on
a logic stronger than �rst-order logic even for countable models.
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Our proof of compactness of L(Qcf
C ) uses some ideas of [7], but it is more

in the spirit of Keisler's proof in [4] of countable compactness of the logic
L(Q1) with the quanti�er of uncountable cardinality. However we use a
simpler notion of weak model. J. Väänänen in the last chapter of [8] o�ers
also a proof of compactness of L(Qcf

ω ) in Keisler's style, but it is incomplete
and only gives countable compactness (see I. Hodkinson's review in [3]).

There are some other proofs in the literature, but also unsatisfactory.
The proof by H-D. Ebbinghaus in [2], based on a set-theoretical translation,
is just an sketch and the proof of J.A. Makowsky and S. Shelah in [5] only
replaces part of Shelah's argument in [7] by a di�erent reasoning and does
not include all details.

2 Connections

For a linear ordering (X,<) we use the expressions

∃ cfx A(x), and ∀ cfx A(x)

for ∀x′ ∃x (x′ ≤ x ∧ A(x)), and ∃x′ ∀x (x′ ≤ x→ A(x)), respectively.

De�nition. Let X and Y be two linear orderings. A connection between X
and Y is a relation G ⊂ X × Y with satis�es

∃ cfx∀ cfy G(x, y) and (1)

∃ cfy ∀ cfx ¬G(x, y). (2)

Note that X and Y cannot be connected if X or Y has a last element.

Remark 2.1. 1. If X has no last element, the relation x ≤ y connects X
with itself.

2. If G connects X and Y , then ¬G−1 = {(y, x) | ¬G(x, y)} connects Y
and X.

3. If G connects X and Y , and H connects Y and Z, then

K =
{

(x, z)
∣∣∣ ∃y′ (∀y (y′ ≤ y → G(x, y)) ∧ H(y′, z)

)}
connects X and Z.
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Proof. We will not make use of this remark, but we give a proof of 3, never-
theless.

∃ cfx ∀ cfz K(x, z): If x′ is given, there are x and y′ that x′ ≤ x and y′ ≤ y →
G(x, y) for all y. If we choose y′ large enough, there is also a z′ such that
z′ ≤ z → H(y′, z) for all z. This shows that z′ ≤ z → K(x, z) for all z.

∃ cfz ∀ cfx ¬K(x, z): If z′ is given, we �nd z, y′ and x′ such that z′ ≤ z and
and for all x and y we have y′ ≤ y → ¬H(y, z) and x′ ≤ x→ ¬G(x, y′). Now
this implies that x′ ≤ x → ¬K(x, z) for all x. To see this assume x′ ≤ x.
We will show that ∀y (y′′ ≤ y → G(x, y)) ∧ H(y′′, z)

)
is wrong for all

y′′. Indeed, if y′′ ≤ y′, this follows from ¬G(x, y′). And if y′ ≤ y′′, we have
¬H(y′′, z).

Remark 2.2. If X and Y are connected by G, then also by

G′ =
{

(x, y)
∣∣∣ ∃x′ (x ≤ x′ ∧ ∀y′ (y ≤ y′ → G(x′, y′))

)}
.

G′ is antitone in x and monotone in y.

Proof. It is easy to see that Ganti =
{

(x, y)
∣∣ ∃x′ (x ≤ x′∧G(x′, y))

}
connects

X and Y and is antitone in x. Now set

G′ = (¬((¬G−1)anti)−1)anti.

Lemma 2.3. Two linear orders without last element are connected if and

only if they have the same co�nality.

Proof. If cf(X) = cf(Y ) = κ, choose two increasing co�nal sequences (xα |
α < κ) and (yα | α < κ) in X and Y . Then

G = {(x, y) | ∃α (x ≤ xα ∧ yα ≤ y)}

connects X and Y .1

For the converse assume that cf(X) = κ, and that G connects X and Y .
Choose a co�nal sequence (xα | α < κ) in X and elements yα in Y such that
yα ≤ y → G(xα, y) for all y. Then the yα are co�nal in Y . To see this let y
be an element of Y . Since the xα are co�nal, we have ¬G(xα, y) for some α.
It follows that y < yα.

1It su�ces to assume that the yα are increasing. Also one can use G = {(xα, y) | yα ≤
y)}.
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Lemma 2.4. Assume that G ⊂ X × Y satis�es

∃ cfx∃y G(x, y) (3)

∀y′ ∃x′ ∀xy (x′ ≤ x ∧ y ≤ y′)→ ¬G(x, y). (4)

Then G′ = {(x, y) | ∃y′ (y′ ≤ y ∧G(x, y′))} connects X and Y .

Note that a connecting G which is monotone in y satis�es (3) and (4).

Proof. This is a straightforward veri�cation.

3 The Main Lemma

Consider a L-structure M with two (parametrically) de�nable linear order-
ings, <ϕ and <ψ of its universe, both without last element. We say that
ϕ and ψ are de�nably connected if there is a de�nable connection between
(M,<ϕ) and (M,<ψ).

Lemma 3.1. If ϕ and ψ are not de�nably connected, and c is a new constant,

the theory

T ′ = Th(M,m)m∈M ∪ {m <ϕ c | m ∈M}
does not isolate the partial type Σ(y) = {n <ψ y | n ∈M}.

Proof. Assume that γ(c, y), for some L(M)-formula γ(x, y), isolates Σ(y) in
T ′. This means that

1. T ′ ∪ {γ(c, y)} is consistent.

2. T ′ ` γ(c, y)→ n <ψ y for all n ∈M .

We show that the relation G de�ned by γ(x, y) has properties (3) and (4) of
Lemma 2.4, where X = (M,<ϕ) and Y = (M,<ψ). This will contradict the
hypothesis of our Lemma.

That T ′ ∪ {γ(c, y)} is consistent means that for all m ∈ M the theory
Th(M,m)m∈M does not prove m ≤ϕ c → ¬∃y γ(c, y), which means that
M |= ∃x(m ≤ψ x ∧ ∃y γ(x, y)). This is exactly condition (3) of 2.4.

That T ′ ` γ(c, y) → n <ψ y means that there is an m ∈ M such that
Th(M,m)m∈M proves (m ≤ϕ c ∧ γ(c, y)) → n <ψ y, which means M |=
∀xy (m ≤ϕ x ∧ y ≤ψ n → ¬γ(x, y). The existence of such m for all n is
exactly condition (4) of 2.4.
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Corollary 3.2. Assume κ is regular, |M |, |L| ≤ κ, and <ϕ is a de�nable

linear ordering of M without last element. Then there is an elementary

extension N of M such that:

1. M is not <ϕ-co�nal in N .

2. If <ψ is a de�nable linear ordering of M of co�nality κ, and ψ and ϕ
are not de�nably connected, then M is <ψ-co�nal in N .

Proof. Let c be a new constant and let T ′ = Th(M,m)m∈M ∪{m <ϕ c | m ∈
M}. By Lemma 3.1, T ′ does not isolate any of the types Σψ(y) = {n <ψ

y | n ∈ M}. By the form of the types and regularity of κ, for any <ψ of
co�nality κ the type Σψ(y) cannot be isolated neither by means of a set of
< κ formulas. By the κ-Omitting Types Theorem, there is a model of T ′

omitting all types Σψ(y) for any <ψ of co�nality κ. This gives the elementary
extension N .

This corollary applies in particular to the case κ = ω. Here the assump-
tion on the co�nality of <ψ is not needed since it is the only possible co�nality
in a countable model, and the Omitting Types Theorem used in the proof is
the ordinary one for countable languages and countably many non-isolated
types.

4 Completeness

For a language L let L(Qcf) be the set of formulas which are built like �rst-
order formulas but using an additional two-place quanti�er Qcfxy ϕ, for
di�erent variables x and y. Let C be class a of regular cardinals and M an
L-structure. For a binary relation R on M , we write �cf R ∈ C� for �R is a
linear ordering of M , without last element and co�nality in C �.

The satisfaction relation |=C for L-structures M , L(Qcf)-formulas ψ(z̄),
and tuples c̄ of elements of M is de�ned inductively, where the Qcf-step is

M |=C Q
cfxy ϕ(x, y, c̄) ⇔ cf {(a, b) |M |=C ϕ(a, b, c̄)} ∈ C.

We say that M is a C-model of T , a set of L(Qcf)-sentences, if M |=C ψ for
all ψ ∈ T .

A weak structureM∗ = (M, . . .) is an L∗-structure, where L∗ is an exten-
sion of L by an n-ary relation Rϕ for every L(Qcf)-formula ϕ(x, y, z1, . . . , zn).
Satisfaction is de�ned using the rule
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M∗ |= Qcfxy ϕ(x, y, c̄) ⇔ M∗ |= Rϕ(c̄).

In weak structures every L(Qcf)-formula is equivalent to a �rst-order L∗-
formula, and conversely. So the L(Qcf)-model theory of weak structures is
the same as their �rst-order model theory.

Note that the C-semantics of M is given by the semantics of the weak
structure M∗ if one sets

M∗ |= Rϕ(c̄) ⇔ M |=C Q
cfxy ϕ(x, y, c̄).

The following lemma is clear:

Lemma 4.1. A weak structure M∗ describes the C-semantics of M if and

only if

M∗ |= Qcfxy ϕ(x, y, c̄) ⇔ cf {(a, b) |M∗ |= ϕ(a, b, c̄)} ∈ C

for all ϕ and c̄.

The following property of weak structures M∗ can be expressed by a set
SA of L(Qcf) sentences (the Shelah Axioms):

If the L(Qcf)(M)-formula ϕ(x, y) satis�es M∗ |= Qcfxy ϕ(x, y) then

ϕ de�nes a linear ordering <ϕ without last element. Furthermore, if

ψ(x, y) de�nes a linear ordering <ψ and M∗ |= ¬Qcfxy ψ(x, y), there
is no de�nable connection between (M,<ϕ) and (M,<ψ).

Lemma 4.2. L-structures with the C-semantics are models of SA.

Proof. This follows from Lemma 2.3.

Theorem 4.3. Let C be a non-empty class of regular cardinals, di�erent

from the class of all regular cardinals. An L(Qcf)-theory T has a C-model if

and only if T ∪ SA has a weak model.

Proof. One direction follows from Lemma 4.2. For the other direction as-
sume that T ∪ SA has a weak model.

Claim 1: If L is countable, T has a {ω}-model of cardinality ω1.
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Proof. LetM∗
0 be countable weak model of T∪SA. Consider a linear ordering

<ϕ without last element and M∗
0 |= ¬Qcfxy ϕ. Then by Corollary 3.2 for

κ = ω and the axioms SA, there is an elementary extensionM∗
1 such thatM0

is not <ϕ-co�nal inM1, but <ψ-co�nal inM1 for every ψ withM∗
0 |= Qcfxy ψ.

We may assume that M∗
1 is countable. Continuing in this manner, taking

unions at limit stages, one constructs an elementary chain of countable weak
models M∗

0 ≺M∗
1 · · · of length ω1 with union M∗, such that

1. If <ϕ is a linear ordering of M∗ without last element and M∗ |=
¬Qcfxy ϕ, and if the parameters of ϕ are in Mα, then for uncount-
ably many β ≥ α, Mβ is not <ϕ-co�nal in Mβ+1.

2. If M∗ |= Qcfxy ψ, and the parameters of ϕ are in Mα, then Mα is
<ψ-co�nal in M .

It follows that, if M∗ |= ¬Qcfxy ϕ, then either ϕ does not de�ne a linear or-
dering without last element, or <ϕ has co�nality ω1. And, if M

∗ |= Qcfxy ψ,
then <ψ has co�nality ω. By Lemma 4.1 M is an {ω}-model of the L(Qcf)-
theory of M∗, and whence an {ω}-model of T . This proves Claim 1.

Let L′ be the extension of L which has for every L(Qcf)-formula ϕ(x, y, z̄)
a new relation symbol Vϕ of arity 2 + 2 · |z̄|. Let SK be the set of axioms
which state that if ϕ(x, y, c̄1) and ϕ(x, y, c̄2) de�ne linear orderings without
last elements, and

Qcfxy ϕ(x, y, c̄1) ↔ Qcfxy ϕ(x, y, c̄2),

then Vϕ(x, y, c̄1, c̄2) de�nes a connection between the two orderings.

Claim 2: T ∪ SA∪ SK has a weak model.

Proof: By compactness we may assume that L is countable. Then T has
an {ω}-model M of cardinality ω1, by Claim 1. If ϕ(x, y, c̄1) and ϕ(x, y, c̄2)
de�ne linear orderings without last element, and M |=C Q

cfxy ϕ(x, y, c̄1) ↔
Qcfxy ϕ(x, y, c̄2), then the two orderings have the same co�nality, namely ω
or ω1, and there is a connection between them by Lemma 2.3. This proves
Claim 2.

To prove the theorem, we choose two regular cardinals λ, κ such that
|L| ≤ κ and either λ 6∈ C and κ ∈ C or conversely. Let M∗

0 be a weak model
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of T ∪ SA∪ SK. It M∗
0 is �nite, it is a C-model of T for trivial reasons2.

Otherwise we may assume thatM∗
0 has cardinality κ and all L(Qcf)-de�nable

linear orderings without last element have co�nality κ. Let us �rst assume
that λ 6∈ C and κ ∈ C.

Consider an L(Qcf)-de�nable linear ordering <ϕ without last element and
M∗

0 |= ¬Qcfxy ϕ. Then by Corollary 3.2 and the axioms SA, there is an
elementary extension M∗

1 such that M0 is not <ϕ-co�nal in M1, but <ψ-
co�nal in M1 for every L(Qcf)-formula ψ with M∗

0 |= Qcfxy ψ. We may
assume that M∗

1 has cardinal κ. The axioms SK imply that in M∗
1 every

L(Qcf)-de�nable linear ordering without last element is connected to a linear
ordering de�ned in M0, and so has also co�nality κ.

Continuing in this manner, taking unions at limit stages, one constructs
an elementary chain of weak models M∗

0 ≺ M∗
1 · · · of length λ with union

M∗, such that

1. If <ϕ is an L(Qcf)-de�nable linear ordering <ϕ of M∗ without last
element and M∗ |= ¬Qcfxy ϕ, and if the parameters of ϕ are in Mα,
then for λ-many β ≥ α, Mβ is not <ϕ-co�nal in Mβ+1.

2. If M∗ |= Qcfxy ψ, and the parameters of ϕ are in Mα, then Mα is
<ψ-co�nal in M .

It follows that, if M∗ |= ¬Qcfxy ϕ, then either ϕ does not de�ne a linear
ordering without last element, or <ϕ has co�nality λ. And, ifM

∗ |= Qcfxy ψ,
then <ψ has co�nality κ. By Lemma 4.1 M � L is an C-model of the L(Qcf)-
theory of M∗, and whence a C-model of T .

The proof in the case λ ∈ C and κ 6∈ C is, mutatis mutandis, the same.

Corollary 4.4. For every class C of regular cardinals, the logic L(Qcf
C ) is

compact.

We have always assumed that whenever Qcfxyϕ(x, y, c̄), the de�nable or-
dering <ϕ linearly orders the universe. This is not exactly the assumption
of Shelah in [7]: with his de�nition <ϕ linearly orders {x | ∃y ϕ(x, y, c̄)},
the domain of ϕ. The results presented here, in particular completeness
and compactness, also apply to this modi�cation of the semantics, it suf-
�ces to add, for each such ϕ, new relation symbols Rϕ and Hϕ, and declare

2SA is used here.
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that for every c̄, Rϕ(x, y, c̄) de�nes a linear ordering <′ϕ on the universe and
Hϕ(x, y, c̄) connects <ϕ and <′ϕ. This gives compactness. For the formula-
tion of completeness (Theorem 4.3) one must adapt the axioms SA to the
new situation.
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