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Abstract

We give an exposition of the compactness of L(Q), for any set C
of regular cardinals.

1 Introduction

We present here a new and short exposition of the proof of the compactness
of the logic L(Q%), first-order logic extended by the cofinality quantifier

¢ where C is a class of regular cardinals. The logic and the proof of
compactness are due to S. Shelah. The Compactness Theorem was stated
and proved in [7], but this article is not self-contained and some fundamental
steps of the proof must be found in the earlier article [6]. The interested
reader consulting these two articles will soon realise that the structure of the
proof is not completely transparent and that to fully understand the details
requires a lot of work.

The most popular case of the cofinality quantifier is the logic L(Q¢) of the
quantifier of cofinality w, that is, C' = {w}. Our motivation comes from the
application of L(Q) in [1] to an old problem on expandability of models. An
anonymous referee of a preliminary version of [1] did not accept the validity
(in ZFC) of the compactness proof presented in [7], apparently confused by
the assumption of the existence of a weakly compact cardinal made at the
beginning of the article. The assumption only applies to a previous result on
a logic stronger than first-order logic even for countable models.
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P. The first author also by a Catalan DURSI grant 2017SGR-270.



Our proof of compactness of L(QY) uses some ideas of [7], but it is more
in the spirit of Keisler’s proof in [4] of countable compactness of the logic
L(Q) with the quantifier of uncountable cardinality. However we use a
simpler notion of weak model. J. Védnanen in the last chapter of [8] offers
also a proof of compactness of L(Q) in Keisler’s style, but it is incomplete
and only gives countable compactness (see I. Hodkinson’s review in [3]).

There are some other proofs in the literature, but also unsatisfactory.
The proof by H-D. Ebbinghaus in [2], based on a set-theoretical translation,
is just an sketch and the proof of J.A. Makowsky and S. Shelah in [5] only
replaces part of Shelah’s argument in [7] by a different reasoning and does
not include all details.

2 Connections
For a linear ordering (X, <) we use the expressions
3% A(z), and Yz A(z)
for Vo' o (2/ < x A A(z)), and 32’ Vo (2’ < 2 — A(x)), respectively.

Definition. Let X and Y be two linear orderings. A connection between X
and Y is a relation G C X x Y with satisfies

342 vy G(x,y) and (1)
3%y Ve Gz, y). (2)

Note that X and Y cannot be connected if X or Y has a last element.

Remark 2.1. 1. If X has no last element, the relation x < y connects X
with itself.

2. If G connects X and Y, then -G = {(y,z) | =G(x,y)} connects Y
and X.

3. If G connects X and Y, and H connects Y and Z, then

K = {(x,z) ’ B (Y (y <y = Glx,y)) A H(y’,Z))}

connects X and Z.



Proof. We will not make use of this remark, but we give a proof of 3, never-
theless.

3fr V2 K (z,2): If 2/ is given, there are x and ¢ that 2/ < x and iy <y —
G(z,y) for all y. If we choose y’ large enough, there is also a 2’ such that
2/ <z— H(y,z) for all z. This shows that 2/ < z — K(z, z) for all 2.

ety vely =K (z,2): If 2/ is given, we find 2, ¥ and 2’ such that 2z’ < z and
and for all x and y we have ¢y <y — —H(y,2) and 2/ <z — —=G(x,y’). Now
this implies that ' < © — —K(x,z2) for all x. To see this assume 2’ < z.
We will show that Vy (v" < y — G(z,y)) A H(y", z)) is wrong for all
y”. Indeed, if ¥ < ¢/, this follows from —G(z,y'). And if ¥/ < 3", we have
-H(y", 2). O

Remark 2.2. If X and Y are connected by G, then also by
G = {(:U,y) ‘ 32’ (z <2/ AVY (y<y — G(x’,y/)))}.

G' is antitone in x and monotone in y.

Proof. Tt is easy to see that G#" = {(x, ) ’ A’ (x < ' NG(2, y))} connects
X and Y and is antitone in . Now set

G/ — (ﬁ((ﬂG—l)anti)—l)anti‘
O]

Lemma 2.3. Two linear orders without last element are connected if and
only if they have the same cofinality.

Proof. If cf(X) = cf(Y) = k, choose two increasing cofinal sequences (x, |
a < k)and (Y, | @ < k) in X and Y. Then

G={(z,y) | Ja (r <xa ANya <y)}

connects X and Y.!

For the converse assume that cf(X) = k, and that G connects X and Y.
Choose a cofinal sequence (z, | @ < k) in X and elements y, in Y such that
Yo <Y — G(x4,y) for all y. Then the y, are cofinal in Y. To see this let y
be an element of Y. Since the x, are cofinal, we have -G(z,,y) for some «.
It follows that y < y,. O

Tt suffices to assume that the y, are increasing. Also one can use G = {(za,¥) | Yo <

y)}- -



Lemma 2.4. Assume that G C X XY satisfies

3% 3y Gz, ) (3)
Vo ' Vay (¢ <ax ANy <y) — -G(z,y). (4)

Then G' = {(z,y) | I (v <y ANG(x,y'))} connects X and Y.
Note that a connecting G which is monotone in y satisfies (3) and (4).

Proof. This is a straightforward verification. m

3 The Main Lemma

Consider a L-structure M with two (parametrically) definable linear order-
ings, <, and <y of its universe, both without last element. We say that
© and ¢ are definably connected if there is a definable connection between
(M, <) and (M, <y).

Lemma 3.1. If ¢ and v are not definably connected, and c is a new constant,
the theory
T' = Th(M,m)mem U{m <, c| m € M}

does not isolate the partial type X(y) = {n <y y | n € M}.

Proof. Assume that v(c,y), for some L(M)-formula ~(x,y), isolates X(y) in
T'. This means that

1. T"U{v(c,y)} is consistent.
2. T"Fy(c,y) = n <y yforalne M.

We show that the relation G defined by v(x,y) has properties (3) and (4) of
Lemma 2.4, where X = (M, <,) and Y = (M, <,). This will contradict the
hypothesis of our Lemma.

That T" U {v(c,y)} is consistent means that for all m € M the theory
Th(M, m)menm does not prove m <, ¢ — =3y ~v(c,y), which means that
M = Jz(m <y x A3y y(z,y)). This is exactly condition (3) of 2.4.

That 7" F v(c,y) — n <y y means that there is an m € M such that
Th(M, m)menm proves (m <, ¢ A y(c,y)) = n <y y, which means M |=
Vey (m <, x Ay <y n = —y(z,y). The existence of such m for all n is
exactly condition (4) of 2.4. O



Corollary 3.2. Assume k is regular, |M|,|L| < K, and <, is a definable
linear ordering of M without last element. Then there is an elementary
extension N of M such that:

1. M is not <,-cofinal in N.

2. If <y 1s a definable linear ordering of M of cofinality k, and v and ¢
are not definably connected, then M is <,-cofinal in N.

Proof. Let ¢ be a new constant and let 77 = Th(M, m)yenm U{m <, c| m €
M}. By Lemma 3.1, T" does not isolate any of the types Xy(y) = {n <y
y | n € M}. By the form of the types and regularity of x, for any <, of
cofinality ~ the type Xy (y) cannot be isolated neither by means of a set of
< k formulas. By the x-Omitting Types Theorem, there is a model of T’
omitting all types ¥, (y) for any <, of cofinality x. This gives the elementary
extension N. [

This corollary applies in particular to the case k = w. Here the assump-
tion on the cofinality of <, is not needed since it is the only possible cofinality
in a countable model, and the Omitting Types Theorem used in the proof is
the ordinary one for countable languages and countably many non-isolated

types.

4 Completeness

For a language L let L(Q) be the set of formulas which are built like first-
order formulas but using an additional two-place quantifier Q%zy ¢, for
different variables x and y. Let C be class a of regular cardinals and M an
L-structure. For a binary relation R on M, we write “cf R € C” for “R is a
linear ordering of M, without last element and cofinality in C' .

The satisfaction relation =¢ for L-structures M, L(Q)-formulas v (z),
and tuples ¢ of elements of M is defined inductively, where the Q%-step is

M e Q%zy p(z,y,6) < cf{(a,b) | M =¢ p(a,b,e)} € C.

We say that M is a C-model of T, a set of L(Q)-sentences, if M =¢ 1 for
allp € T.

A weak structure M* = (M, ...) is an L*-structure, where L* is an exten-
sion of L by an n-ary relation R, for every L(Q)-formula ¢(x,y, 21, ..., 2,).
Satisfaction is defined using the rule



M* = Q%xy p(a,y,0) & M*E R,(@).

In weak structures every L(Q)-formula is equivalent to a first-order L*-
formula, and conversely. So the L(Q)-model theory of weak structures is
the same as their first-order model theory.

Note that the C'-semantics of M is given by the semantics of the weak
structure M* if one sets

M ): Rﬂp(é) & M ):C QCfxy gO(fL’,y,é)
The following lemma is clear:

Lemma 4.1. A weak structure M* describes the C-semantics of M if and
only if

M* E Q%ry p(r.y,0) & cf{(a,b) | M" [ p(a,b0)} € C
for all ¢ and c.

The following property of weak structures M* can be expressed by a set
SA of L(Q) sentences (the Shelah Axioms):

If the L(QY)(M)-formula o(x,y) satisfies M* = Q%xy p(x,y) then
@ defines a linear ordering <, without last element. Furthermore, if

U(z,y) defines a linear ordering <, and M* = —~Q%zy ¢(z,y), there
is no definable connection between (M, <,) and (M, <y).

Lemma 4.2. L-structures with the C'-semantics are models of SA.

Proof. This follows from Lemma 2.3. [

Theorem 4.3. Let C' be a non-empty class of reqular cardinals, different
from the class of all reqular cardinals. An L(Q)-theory T has a C-model if
and only if T USA has a weak model.

Proof. One direction follows from Lemma 4.2. For the other direction as-
sume that 7T"U SA has a weak model.

Claim 1: If L is countable, T has a {w}-model of cardinality w.



Proof. Let M be countable weak model of TUSA. Consider a linear ordering
<, without last element and M | —Q“zy¢. Then by Corollary 3.2 for
k = w and the axioms SA, there is an elementary extension M such that M,
is not <,-cofinal in My, but <y-cofinal in M; for every ¢ with M |= Q% zy .
We may assume that M is countable. Continuing in this manner, taking
unions at limit stages, one constructs an elementary chain of countable weak
models M§ < My --- of length w; with union M*, such that

1. If <, is a linear ordering of M* without last element and M* =
- Q%xy p, and if the parameters of ¢ are in M,, then for uncount-
ably many 3 > o, Mg is not <,-cofinal in Mgz, ;.

2. If M* | Q“ry+, and the parameters of ¢ are in M,, then M, is
<y-cofinal in M.

It follows that, if M* |= = Q%wzy ¢, then either ¢ does not define a linear or-
dering without last element, or <, has cofinality w;. And, if M* = Q% zy 1),
then <, has cofinality w. By Lemma 4.1 M is an {w}-model of the L(Q)-
theory of M*, and whence an {w}-model of T'. This proves Claim 1.

Let L' be the extension of L which has for every L(Q)-formula ¢(z,y, 2)
a new relation symbol V,, of arity 2 4+ 2 - |2|. Let SK be the set of axioms
which state that if p(z,y,¢;) and ¢(z,y, é) define linear orderings without
last elements, and

QCfmygp(x7y,51) « QCfxy(p(xvy752)7

then V,(z,y, ¢, ¢2) defines a connection between the two orderings.
Claim 2: T"U SA USK has a weak model.

Proof: By compactness we may assume that L is countable. Then 7' has
an {w}-model M of cardinality wy, by Claim 1. If ¢o(x,y,¢;) and ¢(z,y, ¢2)
define linear orderings without last element, and M ¢ Q% xy o(z,y,6) +
Q% xy (2,7, ), then the two orderings have the same cofinality, namely w
or wi, and there is a connection between them by Lemma 2.3. This proves
Claim 2.

To prove the theorem, we choose two regular cardinals A, x such that
|L| < k and either A & C' and k € C or conversely. Let M} be a weak model



of T USAUSK. It Mg is finite, it is a C-model of T for trivial reasons?.
Otherwise we may assume that M has cardinality x and all L(Qf)-definable
linear orderings without last element have cofinality x. Let us first assume
that A & C' and k € C.

Consider an L(Q)-definable linear ordering <, without last element and
M; = = Q%zy p. Then by Corollary 3.2 and the axioms SA, there is an
elementary extension M7 such that Mj is not <,-cofinal in M;, but <y -
cofinal in M, for every L(Q%)-formula v with M7 | Q% xyy. We may
assume that M; has cardinal x. The axioms SK imply that in M; every
L(Q)-definable linear ordering without last element is connected to a linear
ordering defined in M, and so has also cofinality k.

Continuing in this manner, taking unions at limit stages, one constructs
an elementary chain of weak models Mj < My --- of length A\ with union
M*, such that

1. If <, is an L(Q)-definable linear ordering <, of M* without last
element and M* = -~ Q%xy o, and if the parameters of ¢ are in M,,
then for A-many 8 > «, Mp is not <,-cofinal in Mgz, ;.

2. If M* = Q%xy+p, and the parameters of ¢ are in M,, then M, is
<y-cofinal in M.

It follows that, if M* | —~Q%xy ¢, then either ¢ does not define a linear

ordering without last element, or <, has cofinality A\. And, if M* |= Q% xy 1,

then <, has cofinality k. By Lemma 4.1 M | L is an C-model of the L(Q)-
theory of M*, and whence a C'-model of T'.

The proof in the case A € C' and k ¢ C is, mutatis mutandis, the same.

0

Corollary 4.4. For every class C of reqular cardinals, the logic L(QY) is
compact.

We have always assumed that whenever Q' zyp(x, 5, ), the definable or-
dering <, linearly orders the universe. This is not exactly the assumption
of Shelah in [7]: with his definition <, linearly orders {z | Jy¢(z,y,0)},
the domain of ¢. The results presented here, in particular completeness
and compactness, also apply to this modification of the semantics, it suf-
fices to add, for each such ¢, new relation symbols R, and H,, and declare

2SA is used here.



that for every ¢, R,(z,y, ) defines a linear ordering <{, on the universe and
H,(z,y,¢) connects <, and <, This gives compactness. For the formula-
tion of completeness (Theorem 4.3) one must adapt the axioms SA to the
new situation.
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