Compactly expandable dense linear orderings

Enrique Casanovas and Martin Ziegler

February 22, 2019

Definition 0.1. Let M be an L-structure, $L \subseteq L'$ and Σ a set of L'sentences. We say that Σ is satisfiable in M if some expansion of M satisfies Σ . We say that Σ is finitely satisfiable in M if every finite subset of Σ is satisfiable in M.

We say that the L-structure M is κ -compactly expandable if for all L'every set of L'-sentences of cardinality $< \kappa$ which is finitely satisfiable in Mis satisfiable in M. It is κ -expandable if every set of sentences of cardinality $< \kappa$ which is consistent with the complete theory of M is satisfiable in M. Finally, if $\kappa = |M|$ is the cardinality of M, we say that M is compactly expandable if it is κ^+ -compactly expandable, and it is expandable if it is κ^+ -expandable .

Remark 0.2. Let (A, <) be compactly expandable dense linear order of cardinality ω_1 .

- 1. η_1 is embeddable in (A, <), if it exists.
- 2. All intervals in (A, <) are uncountable.

Let S_i be a binary predicate symbol for every natural number i, let f be a unary function symbol and consider the language $L = \{<, f\} \cup \{S_i \mid i \in \omega\}$. Let T be the L-theory given by the axioms of dense linear order without endpoints and the following axioms, for all i:

- 1. $\forall xy \ (S_i(x, y) \to x < y)$, for all i,
- 2. $\exists xy \ S_0(x,y)$
- 3. $\forall xy \left(S_i(x,y) \rightarrow \forall z \exists x'y' \left(x < x' < y' < y \land S_{i+1}(x',y') \land \forall w \left(x' < w < y' \rightarrow f(w) > z \right) \right) \right)$

Proposition 0.3. The countable theory T is finitely satisfiable in $(\eta_1 \times \omega, <)$ but is not satisfiable in this model.

Proof. We check first that no expansion of $\eta_1 \times \omega$ satisfies T. Assume M is such an expansion. Choose a cofinal increasing sequence $(c_i \mid i < \omega)$ and choose $a_0 < b_0$ such that $S_0(a_0, b_0)$. Inductively find $a_i < a_{i+1} < b_{i+1} < b_i$ for $i < \omega$ such that $S_i(a_i, b_i)$ and $f(x) > c_i$ for every x in the open interval (a_{i+1}, b_{i+1}) . Every interval in $\eta_1 \times \omega$ is an η_1 -order and hence there is some c such that $a_i < c < b_i$ for every $i < \omega$. But then, $f(c) > c_i$ for every i, in contradiction with the choice of $(c_i \mid i < \omega)$ as a cofinal sequence.

We finish the proof checking that T is finitely satisfiable in $\eta_1 \times \omega$. We build an expansion that satisfies the two basic axioms and the first n axioms of the third kind. Choose $(a_s, b_s \mid s \in \omega^{\leq n})$ such that $a_s < b_s$ and $\{(a_{s^{\frown i}}, b_{s^{\frown i}}) \mid i < \omega\}$ are pairwise disjoint intervals contained in the interval (a_s, b_s) . For every $i \leq n$, define S_i as the set of all pairs a_s, b_s with length(s) = i. Now choose a cofinal increasing sequence $(c_i \mid i < \omega)$ and define inductively f as indicated in the interval $(a_{\emptyset}, b_{\emptyset})$ (and arbitrarily everywhere else):

- 1. If $s \in \omega^{n-1}$ and $x \in (a_{s \cap i}, b_{s \cap i})$, then $f(x) = c_{n+i}$
- 2. If $s \in \omega^{m-1}$ with m < n and $x \in (a_{s^{i}}, b_{s^{i}}) \setminus \bigcup_{j < \omega} (a_{s^{i}}, b_{s^{i}})$, then $f(x) = c_{m+i}$

Note than $s \in \omega^m$ implies $f(x) \ge c_m$ for every $x \in (a_s, b_s)$

Corollary 0.4. The linear order $\eta_1 \times \omega$ is not compactly expandable, even for countable sets of sentences.

Proof. By Proposition 0.3.

- **Remark 0.5.** 1. T is finitely satisfiable in every dense linear order of cofinality ω .
 - 2. T is satisfiable in a dense linear order of cofinality ω if and only if the order contains an (ω, ω) -Dedekind cut.

Proof. 1. This is what really gives the proof of Proposition 0.3.

2. On the one hand, if there are not (ω, ω) -Dedekind cuts, we can reproduce the proof of non satisfiablity of Proposition 0.3. Assume now there is such a cut and choose a < b such that the interval (a, b) contains the cut. Let the increasing sequence $(a_i \mid i < \omega)$ and the decreasing sequence $(b_i \mid i < \omega)$

with $a < a_i < b_j < b$ define the cut and let $(c_i \mid i < \omega)$ be an increasing cofinal sequence. We define S_i as the set of all pairs $a_j b_j$ with $j \ge i$. If $x \in (a_i, b_i) \setminus (a_{i+1}, b_{i+1})$ we put $f(x) = c_i$ and we define f(x) arbitrarily everywhere else. This expansion satisfies T.

The following theory T' is a parametrized version of T. The language is $L = \{\langle, f\} \cup \{S_i \mid i \in \omega\}$, where each S_i is now a 4-ary predicate symbol and f is a 3-ary function symbol. We write $S_i^{uv}(x, y)$ and $f^{uv}(x)$ for $S_i(u, v, x, y)$ and f(u, v, x) respectively. The axioms of T' are the axioms of dense linear order without endpoints and:

- 1. $\forall uv \, xy \, (S_i^{uv}(x, y) \rightarrow u < x < y < v)$
- 2. $\forall uv \exists xy S_0^{uv}(x,y)$
- 3. $\forall uv \, xy \, \left(S_i^{uv}(x,y) \to \forall z \; \exists x'y' \; \left(x < x' < y' < y \land S_{i+1}^{uv}(x',y') \land \forall w \; (x' < w < y' \to f^{uv}(w) > z) \right) \right)$

Proposition 0.6. The countable theory T' is finitely satisfiable in $\eta_1 \times \eta_0$ but is not satisfiable in this model.

Proof. Finite satisfiability is like in the proof of Proposition 0.3, but relativized to every interval. Assume that T' is satisfiable, choose a < b in a copy of η_1 and relativize the proof of the first part of Proposition 0.3 to the interval (a, b).

Corollary 0.7. The linear order $\eta_1 \times \eta_0$ is not compactly expandable, even for countable sets of sentences.

Proof. By Proposition 0.6.

Remark 0.8. 1. T' is finitely satisfiable in every dense linear ordering of cofinality ω .

- 2. T' is satisfiable in a dense linear order of cofinality ω if and only if the (ω, ω) -Dedekind cuts are dense.
- 3. In any compactly expandable dense linear order of cofinality ω , the (ω, ω) -Dedekind cuts are dense.

Proof. 1. This is what really is used in the proof of Proposition 0.6.

2. If a < b are choosen in such a way that the interval (a, b) does not contain (ω, ω) -Dekedind cuts, then we can reproduce the first part of the proof of Proposition 0.3 relativized to the interval (a, b). The other direction is a relativized version of the proof of 2 of Remark 0.5.

3. follows from 1 and 2.