Higher inverse Limits

M.Ziegler *

June 1999

Let I be a totally ordered set. A projective system is an I-indexed family (A_{α}) of abelian groups together with a commutative system of homomorphisms

$$\pi_{\alpha\beta}: A_{\beta} \to A_{\alpha} , \quad (\alpha < \beta \in I).$$

Projective systems forms an abelian category in a natural way. \lim_{\leftarrow} is a left exact functor to the category of abelian groups. Since the category of projective systems has enough injectives lim has right derived functors

$$\lim_{\longleftarrow} = \lim_{\longleftarrow} {}^0, \quad \lim_{\longleftarrow} {}^1, \quad \lim_{\longleftarrow} {}^2 \dots$$

Fix a projective system $(A_{\alpha}, \pi_{\alpha\beta})_{\alpha < \beta \in I}$ and a number $n \ge 0$. We call a family

$$c = (c_{\alpha_0 \dots \alpha_n}),$$

indexed by ascending sequences $\alpha_0 < \ldots < \alpha_n$ of elements of I, an *n*-cochain if each $c_{\alpha_0...\alpha_n}$ is an element of A_{α_0} . The set of *n*-chains form an abelian group \mathbb{C}^n under component-wise addition. The coboundary homomorphisms

$$\delta: \mathbf{C}^n \to \mathbf{C}^{n+1}$$

defined by

$$(\delta c)_{\alpha_0\dots\alpha_{n+1}} = \pi_{\alpha_0\alpha_1}(c_{\alpha_1\dots\alpha_n}) + \sum_{i=1}^{n+1} (-1)^i c_{\alpha_0\dots\widehat{\alpha_i}\dots\alpha_{n+1}},$$

make $C = (C^n)_{n \ge 0}$ into a cochain complex, which means that $\delta^2 = 0$.

As usual the cohomology groups of C are defined as the quotients

$$\mathrm{H}^{n}(\mathrm{C}) = \mathrm{Z}^{n}(\mathrm{C}) / \mathrm{B}^{n}(\mathrm{C})$$

of the groups

$$\mathbf{Z}^{n}(\mathbf{C}) = \{ z \in \mathbf{C}^{n} \mid \delta z = 0 \}$$

^{*}Material related to a talk given in Hattingen, July 1999

of n-cocycles and the subgroups

$$\mathbf{B}^{n}(\mathbf{C}) = \{\delta c \, | \, c \in \mathbf{C}^{n-1}\}$$

of n-coboundaries.

Theorem 1 ([1, Théorème 4.1]).

$$\lim_{\leftarrow \alpha \in I}^{n} A_{\alpha} = \mathrm{H}^{n}(\mathrm{C})$$

Readers who don't like derived functors can take $\operatorname{H}^{n}(C)$ as the definition of $\lim_{\leftarrow \alpha \in I}^{n} A_{\alpha}$. The content of the last theorem is then that the $\lim_{\leftarrow n}^{n}$ has the characterizing properties of the derived functors: They are trivial on injective projective systems and there is a natural long cohomology sequence.

Lemma 2 ([1, p.12]). If J is cofinal in I, the natural restriction map

$$\underset{\longleftarrow}{\lim}^{n} A_{\alpha} \to \underset{\alpha \in J}{\lim}^{n} A_{\alpha}$$

is an isomorphism for all n.

Proof. The $\lim_{\alpha \in J} A_{\alpha}$ (n = 0, 1, ...) have the characterizing properties of the right derived functors of $\lim_{\alpha \in I} A_{\alpha} = \lim_{\alpha \in J} A_{\alpha}$.

Lemma 3. If I has a last element the projective system $(A_{\alpha})_{\alpha \in I}$ is acyclic. That means that $\lim_{\alpha \in I} A_{\alpha} = 0$ for all $n \geq 1$.

Proof. We begin with a general observation, which will be useful later on. Fix an element $\lambda \in I$ and denote by C_{λ}^{n} the set of *n*-cochains over $I_{\lambda} = \{\alpha \in I \mid \alpha < \lambda\}$. Define two homomorphisms, the restriction

 $\mathbf{t}:\mathbf{C}^n\to\mathbf{C}^n_\lambda$

and

$$h: \mathbb{C}^n \to \mathbb{C}^{n-1}_\lambda$$

by $h(c)_{\alpha_0...\alpha_{n-1}} = c_{\alpha_0...\alpha_{n-1}\lambda}$. h does not commute with δ , but we have for $c \in \mathbb{C}^n$

$$h\delta(c) = (-1)^{n+1} t(c) + \delta h(c).$$

$$\tag{1}$$

Now assume $n \ge 1$ and z a *n*-cocycle. Let λ be the last element of *I*. Define the n - 1-cochain d by

$$d_{\alpha_0...\alpha_{n-1}} = \begin{cases} z_{\alpha_0...\alpha_{n-1}\lambda} & \text{if } \alpha_{n-1} < \lambda \\ 0 & \text{otherwise} \end{cases}$$

Then $\delta(d) = (-1)^n z$. This follows from (1) for indices in I_{λ} and

$$\delta(d)_{\alpha_0\dots\alpha_{n-1}\lambda} = (-1)^n d_{\alpha_0\dots\alpha_{n-1}} = (-1)^n z_{\alpha_0\dots\alpha_{n-1}\lambda}.$$

Jensen proved in [1, Corollaire 3.2] that

$$\underset{\leftarrow}{\lim}_{\alpha\in I}^{n+2}A_{\alpha} = 0,$$

whenever $cf(I) \leq \omega_n$. Furthermore he proved that the result is optimal: For every *n* there is a projective system $(A_{\alpha})_{\alpha \in \omega_n}$ such that $\lim_{\alpha \in \omega_n} A_{\alpha} \neq 0$ ([1, Proposition 6.2]).

If we look at *epimorphic* systems $(A_{\alpha}, \pi_{\alpha\beta})_{\alpha < \beta \in I}$, where all the $\pi_{\alpha\beta}$ are surjective, we have a better result:

Theorem 4 ([3, Theorem 3.3]). For epimorphic systems with $cf(I) \leq \omega_n$ we have

$$\lim_{\leftarrow \alpha \in I}^{n+1} A_{\alpha} = 0.$$

Proof. We use induction on n and begin with the case n = 0, where we can assume that $I = \mathbb{N}$. Let a 1-cocycle c be given. We choose recursively elements $d_i \in A_i$ such that $\pi_{i,i+1}(d_{i+1}) = d_i + c_{i,i+1}$. The relation $\delta c = 0$ entails now $\delta d = c$.

Now assume n > 0.

We may assume that I is isomorphic to ω_k for some $k \leq n$. Let c be an (n+1)-cocycle. We want to write c as the coboundary of an n-cochain d. We construct the components $d_{\alpha_0...\alpha_n}$ by recursion on α_n .

Fix $\lambda \in I$ and assume that d is already constructed up to λ . This means that a $d' \in C_{\lambda}^{n}$ is given such that $\delta(d') = t(c)$. To extend d' to a suitable ncochain d defined on $\{\alpha \in I \mid \alpha \leq \lambda\}$ means that t(d) = d' and that $t\delta(d) = t(c)$ and $h\delta(d) = h(c)$. But I_{λ} either has a last element or has a cofinality smaller that ω_{n} , which gives us $\lim_{\epsilon \to \alpha \in I_{\lambda}} A_{\alpha} = 0$. On the other hand $\delta(c) = 0$ implies $(-1)^{n}t(c) + \delta h(c) = 0$. Therefore $(-1)^{n}d' + h(c)$ is a cocycle, which we may write as δe for some (n-1)-chain e on I_{λ} . Now extend d' to d such that t(d) = d'and h(d) = e. Then $t\delta(d) = \delta t(d) = \delta(d') = t(c)$ and

$$\begin{split} \mathrm{h}\delta(d) &= (-1)^n \mathrm{t}(d) + \delta \mathrm{h}(d) \\ &= (-1)^{n+1} d' + \delta e \\ &= (-1)^{n+1} d' + (-1)^n d' + \mathrm{h}(c) \\ &= \mathrm{h}(c). \end{split}$$

Lemma 5 (Todorcevic). Let $(B_{\xi})_{\xi \in \omega_1}$ be a family of infinite abelian groups. For the projective system $A_{\alpha} = \bigoplus_{\xi < \alpha} B_{\xi}$ ($\alpha \in \omega_1$) with the the obvious projection maps we have

$$\lim_{\leftarrow \alpha \in \omega_1} A_{\alpha} \neq 0.$$

Proof. In ([2, p.70]) an Aronszajn tree is constructed from a sequence $(f_{\alpha})_{\alpha < \omega_1}$ of injective functions $f_{\alpha} : \alpha \to \omega$ such that for all $\alpha < \beta$ the two functions f_{α} and $f_{\beta} \upharpoonright \alpha$ differ only for finitely many arguments. In each B_{ξ} we choose a copy of ω . Then f_{α} defines an element of $A'_{\alpha} = \prod_{\xi < \alpha} B_{\xi}$. Define

$$c_{\alpha\beta} = f_{\beta} \upharpoonright \alpha - f_{\alpha} \in A_{\alpha}.$$

Then c is a 1-cocycle, which is not a coboundary. For otherwise, there would be a sequence $d_{\alpha} \in A_{\alpha}$ ($\alpha \in \omega_1$) such that $c_{\alpha\beta} = d_{\beta} \upharpoonright \alpha - d_{\alpha}$. But then the functions $f_{\alpha} - d_{\alpha}$ form an ascending sequence and the union f of this sequence is a map defined on ω_1 , which is finite to one since it is finite to one on every α . This is impossible.

Theorem 6. Let $(B_{\xi})_{\xi \in \omega_n}$ be a family of countably infinite abelian groups and $A_{\alpha} = \bigoplus_{\xi < \alpha} B_{\xi}$. Assume $n \ge 1$ and that for each $1 < i \le n \diamond_{\omega_i}(E_i)$ holds for $E_i = \{\alpha \in \omega_i \mid cf(\alpha) = \omega_{i-1}\}$. Then

$$\underset{\longleftarrow}{\lim}^{n} A_{\alpha} \neq 0.$$

Proof. ¹ The proof proceeds by induction on n. The case n = 1 is a special case of Todorcevics lemma. So we assume $n \ge 2$. $\Diamond_{\omega_n}(E_n)$ gives us a sequence $(S^{\lambda})_{\lambda \in E_n}$ such that

- 1. each S^{λ} is an (n-1)-cochain of $(A_{\alpha})_{\alpha < \lambda}$
- 2. for each (n-1)-cochain d defined on ω_n the set

$$\{\lambda \in E_n \mid d \upharpoonright \lambda = S^\lambda\}$$

is stationary in ω_n .

We define the components $c_{\alpha_0...\alpha_n}$ of an *n*-cocycle *c* by induction on α_n . We can start the construction anywhere. For example with the zero *n*-cocycle defined on ω_0 . Now assume that the $c_{\alpha_0...\alpha_n}$ are already defined for all $\alpha_n < \lambda$, giving rise to a cocycle *c'* on C^n_{λ} .

<u>Claim</u> c' can be extended to a cocycle c defined on $\lambda + 1$. Proof: If we let c extend the cocycle c' we have only to ensure that $h\delta(c) = 0$. By (1) this is equivalent to

$$\delta \mathbf{h}(c) = (-1)^{n+1} c'$$

 $^{^1\}mathrm{I}$ thank Burban Veliskovic for a helpful discussion of this proof

By theorem 4 $\lim_{\alpha < \lambda}^{n} A_{\alpha} = 0$. Whence there is an $e \in C_{\lambda}^{n-1}$ with $\delta e = (-1)^{n+1}c'$ and we can extend c' by setting h(c) = e. All other extension of c to cocycles on $\lambda + 1$ can be obtained by adding an (n-1)-cocycle (defined over λ) to h(c).

Now if λ is a successor or has cofinality smaller than ω_{n-1} we don't care and choose an arbitrary extension of c' to $\lambda + 1$.

If $cf(\lambda) = \omega_{n-1}$ we choose *c* more carefully and ensure that the difference $h(c) - (-1)^n S^{\lambda}$ is not the coboundary of an (n-2)-cycle over λ . If necessary we change h(c) by a cocycle e' which is not a coboundary over λ . Such an e' exists by the induction hypothesis.

To complete the proof we show that c is not a coboundary. For this look at an arbitrary (n-1)-cochain δd defined on ω_n . By the choice of the S^{λ} there is a $\lambda \in E_n$ such that $d \upharpoonright \lambda = S^{\lambda}$. By (1) we have

$$h\delta(d) - (-1)^n S^\lambda = \delta h(d).$$

By our construction $h\delta(d) \neq h(c)$ and therefore $\delta(d) \neq c$.

Open Problem: Can one prove the last theorem without diamond?

References

- C. U. Jensen. Les Foncteurs Dérivés de lim et leurs Applications en Théorie des Modules. Number 254 in Lecture Notes in Mathematics. Springer Verlag; Berlin, Göttingen, Heidelberg, 1970.
- [2] Kenneth Kunen. Set Theory. An Introduction to Independence Proofs. North Holland Publishing Company, 1980.
- [3] Martin Ziegler. Divisible uniserial modules over valuation domains. In Manfred Droste and Rüdiger Göbel, editors, Advances in Algebra and Model Theory, volume 9 of Algebra, Logic and Applications Series, pages 433–444. Gordon and Breach Science Publishers, 1997.