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Let I be a totally ordered set. A projective system is an I-indexed family
(Aα) of abelian groups together with a commutative system of homomorphisms

παβ : Aβ → Aα , (α < β ∈ I).

Projective systems forms an abelian category in a natural way. lim
←−

is a left
exact functor to the category of abelian groups. Since the category of projective
systems has enough injectives lim

←−
has right derived functors

lim
←−

= lim
←−

0, lim
←−

1, lim
←−

2 . . .

Fix a projective system (Aα, παβ)α<β∈I and a number n ≥ 0. We call a
family

c = (cα0...αn),

indexed by ascending sequences α0 < . . . < αn of elements of I, an n–cochain if
each cα0...αn is an element of Aα0 . The set of n–chains form an abelian group
Cn under component–wise addition. The coboundary homomorphisms

δ : Cn → Cn+1,

defined by

(δc)α0...αn+1 = πα0α1(cα1...αn) +
n+1∑

i=1

(−1)icα0...cαi...αn+1 ,

make C = (Cn)n≥0 into a cochain complex, which means that δ2 = 0.

As usual the cohomology groups of C are defined as the quotients

Hn(C) = Zn(C)/ Bn(C)

of the groups
Zn(C) = {z ∈ Cn | δz = 0}

∗Material related to a talk given in Hattingen, July 1999
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of n–cocycles and the subgroups

Bn(C) = {δc | c ∈ Cn−1}
of n–coboundaries.

Theorem 1 ([1, Théorème 4.1]).

lim
←−

n

α∈I
Aα = Hn(C)

Readers who don’t like derived functors can take Hn(C) as the definition
of lim

←−
n

α∈I
Aα. The content of the last theorem is then that the lim

←−
n has the

characterizing properties of the derived functors: They are trivial on injective
projective systems and there is a natural long cohomology sequence.

Lemma 2 ([1, p.12]). If J is cofinal in I, the natural restriction map

lim
←−

n

α∈I
Aα → lim

←−
n

α∈J
Aα

is an isomorphism for all n.

Proof. The lim
←−

n

α∈J
Aα (n = 0, 1, . . . ) have the characterizing properties of the

right derived functors of lim
←−

0

α∈I
Aα = lim

←−
0

α∈J
Aα.

Lemma 3. If I has a last element the projective system (Aα)α∈I is acyclic.
That means that lim

←−
n

α∈I
Aα = 0 for all n ≥ 1.

Proof. We begin with a general observation, which will be useful later on. Fix an
element λ ∈ I and denote by Cn

λ the set of n–cochains over Iλ = {α ∈ I | α < λ}.
Define two homomorphisms, the restriction

t : Cn → Cn
λ

and
h : Cn → Cn−1

λ

by h(c)α0...αn−1 = cα0...αn−1λ. h does not commute with δ, but we have for
c ∈ Cn

hδ(c) = (−1)n+1t(c) + δh(c). (1)

Now assume n ≥ 1 and z a n–cocycle. Let λ be the last element of I. Define
the n− 1–cochain d by

dα0...αn−1 =

{
zα0...αn−1λ if αn−1 < λ

0 otherwise
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Then δ(d) = (−1)nz. This follows from (1) for indices in Iλ and

δ(d)α0...αn−1λ = (−1)ndα0...αn−1 = (−1)nzα0...αn−1λ.

Jensen proved in [1, Corollaire 3.2] that

lim
←−

n+2

α∈I
Aα = 0,

whenever cf(I) ≤ ωn. Furthermore he proved that the result is optimal: For
every n there is a projective system (Aα)α∈ωn

such that lim
←−

n+1

α∈ωn

Aα 6= 0 ([1,

Proposition 6.2]).

If we look at epimorphic systems (Aα, παβ)α<β∈I , where all the παβ are
surjective, we have a better result:

Theorem 4 ([3, Theorem 3.3]). For epimorphic systems with cf(I) ≤ ωn we
have

lim
←−

n+1

α∈I
Aα = 0.

Proof. We use induction on n and begin with the case n = 0, where we can
assume that I = N. Let a 1–cocycle c be given. We choose recursively elements
di ∈ Ai such that πi,i+1(di+1) = di + ci,i+1. The relation δc = 0 entails now
δd = c.

Now assume n > 0.
We may assume that I is isomorphic to ωk for some k ≤ n. Let c be an

(n + 1)–cocycle. We want to write c as the coboundary of an n–cochain d. We
construct the components dα0...αn by recursion on αn.

Fix λ ∈ I and assume that d is already constructed up to λ. This means
that a d′ ∈ Cn

λ is given such that δ(d′) = t(c). To extend d′ to a suitable n–
cochain d defined on {α ∈ I | α ≤ λ} means that t(d) = d′ and that tδ(d) = t(c)
and hδ(d) = h(c). But Iλ either has a last element or has a cofinality smaller
that ωn, which gives us lim

←−
n

α∈Iλ

Aα = 0. On the other hand δ(c) = 0 implies

(−1)nt(c)+δh(c) = 0. Therefore (−1)nd′+h(c) is a cocycle, which we may write
as δe for some (n − 1)–chain e on Iλ. Now extend d′ to d such that t(d) = d′

and h(d) = e. Then tδ(d) = δt(d) = δ(d′) = t(c) and

hδ(d) = (−1)nt(d) + δh(d)
= (−1)n+1d′ + δe
= (−1)n+1d′ + (−1)nd′ + h(c)
= h(c).
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Lemma 5 (Todorcevic). Let (Bξ)ξ∈ω1 be a family of infinite abelian group-
s. For the projective system Aα =

⊕
ξ<α Bξ (α ∈ ω1) with the the obvious

projection maps we have
lim
←−

1

α∈ω1

Aα 6= 0.

Proof. In ([2, p.70]) an Aronszajn tree is constructed from a sequence (fα)α<ω1

of injective functions fα : α → ω such that for all α < β the two functions fα

and fβ ¹ α differ only for finitely many arguments. In each Bξ we choose a copy
of ω. Then fα defines an element of A′α =

∏
ξ<α Bξ. Define

cαβ = fβ ¹ α− fα ∈ Aα.

Then c is a 1-cocycle, which is not a coboundary. For otherwise, there would
be a sequence dα ∈ Aα (α ∈ ω1) such that cαβ = dβ ¹ α − dα. But then the
functions fα − dα form an ascending sequence and the union f of this sequence
is a map defined on ω1, which is finite to one since it is finite to one on every
α. This is impossible.

Theorem 6. Let (Bξ)ξ∈ωn be a family of countably infinite abelian groups and
Aα =

⊕
ξ<α Bξ. Assume n ≥ 1 and that for each 1 < i ≤ n 3ωi(Ei) holds for

Ei = {α ∈ ωi | cf(α) = ωi−1}. Then

lim
←−

n

α<ωn

Aα 6= 0.

Proof. 1 The proof proceeds by induction on n. The case n = 1 is a special
case of Todorcevics lemma. So we assume n ≥ 2. 3ωn(En) gives us a sequence
(Sλ)λ∈En such that

1. each Sλ is an (n− 1)–cochain of (Aα)α<λ

2. for each (n− 1)–cochain d defined on ωn the set

{λ ∈ En | d ¹ λ = Sλ}

is stationary in ωn.

We define the components cα0...αn of an n–cocycle c by induction on αn. We can
start the construction anywhere. For example with the zero n–cocycle defined
on ω0. Now assume that the cα0...αn are already defined for all αn < λ, giving
rise to a cocycle c′ on Cn

λ .

Claim c′ can be extended to a cocycle c defined on λ + 1.
Proof: If we let c extend the cocycle c′ we have only to ensure that hδ(c) = 0.
By (1) this is equivalent to

δh(c) = (−1)n+1c′.
1I thank Burban Veliskovic for a helpful discussion of this proof

4



By theorem 4 lim
←−

n

α<λ
Aα = 0. Whence there is an e ∈ Cn−1

λ with δe = (−1)n+1c′

and we can extend c′ by setting h(c) = e. All other extension of c to cocycles
on λ + 1 can be obtained by adding an (n− 1)–cocycle (defined over λ) to h(c).

Now if λ is a successor or has cofinality smaller than ωn−1 we don’t care and
choose an arbitrary extension of c′ to λ + 1.

If cf(λ) = ωn−1 we choose c more carefully and ensure that the difference
h(c) − (−1)nSλ is not the coboundary of an (n − 2)–cycle over λ. If necessary
we change h(c) by a cocycle e′ which is not a coboundary over λ. Such an e′

exists by the induction hypothesis.

To complete the proof we show that c is not a coboundary. For this look at
an arbitrary (n− 1)–cochain δd defined on ωn. By the choice of the Sλ there is
a λ ∈ En such that d ¹ λ = Sλ. By (1) we have

hδ(d)− (−1)nSλ = δh(d).

By our construction hδ(d) 6= h(c) and thererfore δ(d) 6= c.

Open Problem: Can one prove the last theorem without diamond?
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