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Abstract

We give elementary proofs, using suitable jet spaces, of some old
and new structural results concerning finite-dimensional differential
algebraic varieties (characteristic zero). We prove analogous results for
difference algebraic varieties in characteristic zero. We also mention
partial results and problems in the positive characteristic case.

1 Introduction and preliminaries

It is by now well-known that certain structure theorems for finite-dimensional
differential algebraic and difference algebraic varieties have implications for
diophantine geometry (Mordell-Lang over function fields and Manin-Mumford
over number fields). These structure theorems give conditions under which
certain finite-dimensional differential (difference) varieties “come from” the
constants (fixed field). In the differential algebraic context, the existing
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proofs of these various structural results make use of analytic arguments
in the case of Buium (characteristic zero)[3], [5], and of “Zariski geometries”
in the case of Hrushovski (all characteristics) ([14], [13], [11]). The charac-
teristic 0 difference algebraic case is dealt with in [7] by somewhat involved
arguments, and in the positive characteristic “Zariski geometries” again in-
tervene [8]. Also in many cases, the arguments use properties of groups and
fields definable in the relevant structures.

In this paper we obtain these structure theorems (and somewhat more)
fairly directly in the characteristic zero case, using differential and difference
analogues of jet spaces. The main result, stated in model-theoretic language,
is:
(*) in the relevant structure (a model of DCF0 or ACFA0), and working
inside a finite-dimensional set X, for any a and b the type of Cb(tp(a/b))
over a is internal (almost internal) to the field of constants (fixed field).

It should be said that (*) is in a sense strictly stronger than the Zilber
dichotomy (for the relevant structures) which says:
(**) any type of U -rank 1 (SU -rank 1) is either modular or internal (almost
internal) to the constants (fixed field).

(*) implies (**) immediately. But using (**) one can only formally derive that
tp(Cb(tp(a/b))/a) is analyzable (almost analyzable) in the constants (fixed
field). Analyzability in the constants (fixed field) does not in general imply
internality. In fact the statement (*) directly yields that if G is a finite-
dimensional group and X a differential (difference) subvariety of G with
trivial (or even finite) stabilizer, then X is internal to the constants (fixed
field). So the “socle argument” from [11] is also subsumed by (*).

The jet spaces we use for the proof are not the prolongations of Buium,
but rather analogues of the standard jet spaces or jets from algebraic geom-
etry: dual spaces toM/Mn whereM is the maximal ideal of the local ring
of a variety at a given point, and n ≥ 2. Analogous results on cycle spaces in
compact complex spaces were proved by Campana [6] and Fujiki [9] indepen-
dently, using complex analytic jet bundles. (See [19] for the model-theoretic
interpretation.) After reading Campana’s paper, the first author saw the
possibility of adapting the ideas to the differential and difference algebraic
contexts. The details (that is, the definition and properties of the differential
jet spaces) were worked out in a very enjoyable collaboration with the second
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author.
In the remainder of this section we recall the standard jet spaces and their

properties.
Let K be an algebraically closed field of any characteristic. Let X ⊆ Kn

be an irreducible affine variety, with ideal IX ⊂ K[x1, .., xn] and coordinate
ring K[X] = K[x1, .., xn]/IX . Let a ∈ X. MX,a is by definition {f ∈ K[X] :
f(a) = 0}. For each m ≥ 2, MX,a/Mm

X,a is a finite-dimensional K-vector
space, and we define Jm−1(X)a, the (m− 1)st jet space of X at a, to be its
dual space. For m = 2, we get the tangent space to X at a. (In the literature
the kth jet space to X at a is often called the k-jet of X at a. We hope there
is no confusion with our terminology.)

The following basic fact is crucial to us.

Fact 1.1 (With above notation.) Let a ∈ X. Then
⋂
mMm

X,a = (0).

Proof. Corollary 10.18 of [2] for example says that if R is a Noetherian
domain and I a proper ideal of R then

⋂
n I

n = (0). (So Fact 1.1 also holds
for the maximal ideal of the local ring of X at a, in place of MX,a.)

In the special case where X = Kn (affine n-space), let Ma denote MX,a,
and Jma the corresponding jet space. So for arbitrary X we have canonical
linear embeddings of Jm(X)a in Jma for all m. We will identify Jm(X)a with
its image.

Fact 1.2 Suppose X, Y are irreducible subvarieties of Kn, and a ∈ X ∩ Y .
Suppose Jm(X)a = Jm(Y )a for all m. Then X = Y .

Proof. If f ∈ IX then f/Mm
a is annihilated by Jm(X)a for all m and thus

by Jm(Y )a for all m. It follows that for all m, f/IY ∈ Mm
Y,a for all m. By

Fact 1.1 ∩mMm
Y,a = (0). Thus f ∈ IY .

Remark 1.3 (i) Let X be a subvariety of Kn. Fix m ≥ 1. Let D be the set
of differential operators of the form

∂s

∂xs1i1 ∂x
s2
i2 ...∂x

sr
ir

where 0 < s ≤ m, 1 ≤ i1 < i2 < .. < ir ≤ n, s1 + ...+ sr = s, and 0 < si. Let
a ∈ X. Let d = |D|. Then Jm(X)a identifies with the subspace {(uD)D∈D :
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∑
D∈DDP (a)uD = 0, P ∈ IX} of Kd. Moreover, if X is defined over k < K,

then we can restrict the polynomials P to those in IX ∩ k[X1, .., Xn].
(ii) For X a (not necessarily affine) algebraic variety over K and a ∈ X(K),
we can again define Jm(X)a working either in an affine neighbourhood of a
in X, or equivalently working with the local ring of X at a.
(iii) Suppose X,Y are varieties over K, f : X → Y is a morphism over K,
and a ∈ X(K), then f induces a canonical linear map J(f)a : Jm(X)a →
Jm(Y )f(a). J(f)a is an embedding if f is a closed immersion.
(iv) (Bearing in mind (ii) and (iii).) Let X,Y be subvarieties of Z, all over
K. Let a ∈ X ∩ Y be nonsingular on X, Y, Z. Then X = Y iff Jm(X)a =
Jm(Y )a (as subspaces of Jm(Z)a) for all m.
(v) In fact the jet spaces of X at a as a varies fit together to give the jet
bundle J(X) of X. J is a functor.

Proof. Left to the reader.

Thanks are due to Elisabeth Bouscaren, Zoe Chatzidakis, Piotr Kowalski,
Dave Marker, and Tom Scanlon for various comments and/or discussions
regarding an earlier draft of this paper.

2 Differential fields of characteristic zero

In this section we establish the main results for finite-dimensional differen-
tial algebraic varieties in characteristic zero. We refer the reader to [4] for
background on “differential algebraic geometry” and to [16] for background
on the model-theoretic approach to this subject.

We will work inside a large (saturated) differentially closed field (U ,+, ·, ∂)
(of characteristic zero). C denotes the field of constants of U . The field U is
also a universal domain for algebraic geometry and we will treat it as such
freely.

Let us start by giving an informal description of what we wish to consider
as the jet spaces of differential algebraic varieties. A (affine) differential
algebraic variety X is roughly speaking the zero set (in Un) of a finite system
of differential polynomial equations, that is polynomial equations over U in
x1, .., xn, ∂x1, .., ∂xn, ∂

2x1, .., ∂
2xn, .... Given a point a ∈ X, we obtain the

local ring O of X at a, that is the ring of differential rational functions
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on X which are defined at a. O comes equipped naturally with an action
of ∂ extending the action on U , making O into a differential ring. The
maximal ideal M of O consists of those f ∈ O which are zero at a. M
is a differential ideal of O, as is Mm for any m. Thus for any m, the
U -vector space Vm =M/Mm is acted on by ∂ making it a possibly infinite-
dimensional “∂-module” over U . Then the mth jet space to X at a should
consist of those elements of the dual space to Vm+1 which commute with ∂.
In the case m = 1 (differential tangent space) this notion was introduced and
studied by Cassidy and Kolchin [15].

This general notion is worth studying. It makes sense also for fields
equipped with several commuting derivations and may give insight into the
structure of differential varieties in this more general context. However here
we have more limited aims. We are interested in the case of one derivation
and where X is “finite-dimensional”, that is, its differential function field has
finite transcendence degree (over U). In this case X can be considered as
an algebraic variety X1 say, equipped with a “connection” s. The jet space
of X at a (as described informally in the previous paragraph) is a subset of
the standard jet space of the algebraic variety X at a, and we want to study
its properties, in particular prove Zariski-denseness and finite-dimensionality
over the field C of constants. This turns out to be simply an issue of linear
differential equations. So we start with some remarks on “∂-modules”.

Definition 2.1 Let (K,+, ·, ∂) be a differential field.
(i) By a ∂-module over K we mean a finite-dimensional K-vector space V
together with an additive endomorphism DV : V → V such that for any
c ∈ K and v ∈ V , DV (c · v) = ∂(c) · v + c ·DV (v).
(ii) Let (V,DV ) be as in (i). By (V ∗)∂ we mean the subset of the dual space
V ∗ of V consisting of those f such that f(DV (v)) = ∂(f(v)) for all v ∈ V .

Lemma 2.2 Suppose K to be differentially closed with field k of constants.
Let V be a ∂-module over K. Then (V ∗)∂ is a finite-dimensional k-vector
space and is Zariski-dense in V ∗. In fact V ∗ can be given a k-structure in
such a way that (V ∗)∂ is precisely V ∗(k), the set of k-rational points of V ∗.

Proof. It is clear that (V ∗)∂ is a k-vector subspace of V ∗.
Fix λ ∈ V ∗. It is easy to check that

λ′(x) = ∂(λ(x))− λ(DV (x))

5



defines an element λ′ of V ∗. Fix a basis e1, .., en of V . Then λ ∈ (V ∗)∂ iff
λ′ = 0 which is equivalent to λ′(ei) = 0 for i = 1, .., n. Let e∗1, .., e

∗
n be the dual

basis, and suppose λ =
∑
yie
∗
i . Then λ′(ei) = 0 iff ∂yi − λ(DV (ei)) = 0. So,

writing DV (ei) as
∑
di,jej, we see that λ′ = 0 iff ∂yi =

∑
di,jyj for i = 1, .., n.

So with respect to the basis (e∗i )i, (V ∗)∂ is precisely the set of solutions of
the linear differential equation ∂(yt) = Ayt where yt is (y1, .., yn) as a column
vector and A is the matrix (di,j)i,j. As K is differentially closed this system
has a fundamental matrix U of solutions in K. That is U is a nonsingular
n-by-n matrix over K whose columns form a k-basis for (V ∗)∂. So, choosing
the elements of (V ∗)∂ represented by the columns of U as a basis of V ∗, gives
V ∗ a k-structure such that (V ∗)∂ = V ∗(k). The lemma is proved.

Remark 2.3 The above construction turns V ∗ into a ∂-module (V ∗, DV ∗)
by setting DV ∗(λ) = λ′. What we called (V ∗)∂ above is precisely the solution
set of the linear differential equation DV ∗ = 0 on V ∗.

We can now give a differential version of Fact 1.2. It is convenient to introduce
first “finite-dimensional affine differential algebraic varieties”. Such an object
is an irreducible varietyX ⊂ Un, together with a polynomial map s : X → Un
such that (X, s)] =def {x ∈ X : ∂(x) = s(x)} is Zariski dense in X. We think
of (X, s)] as the set of U -points of (X, s). We write X] when s is understood.
X] is a definable set in U of finite Morley rank, and moreover up to Boolean
combination any such definable set in U of finite Morley rank has this form.

It is well-known that the only condition on s = (s1, .., sn) required to
guarantee Zariski-denseness of (X, s)] in X is that the polynomials∑n
i (∂P/∂xi)(x)si(x) + P ∂(x) are in IX for every P ∈ IX , or for just those P

in a given set of generators of IX . Here P ∂ denotes the result of applying ∂
to the coefficients of P .

By virtue of s ∂ extends to a derivation of the coordinate ring U [X] of
X: ∂f =

∑
i(∂f/∂xi)si + f∂.

Then for a ∈ X], MX,a is a differential ideal of U [X], as is Mm
X,a for

each m. It follows that each MX,a/Mm
X,a for m ≥ 2 is (via the action of

∂) a ∂-module over U . Let Jm(X])a be the elements of Jm(X)a (the dual
space ofMX,a/Mm+1

X,a ) which commute with ∂. Then Lemma 2.2 applies. In
particular Jm(X])a is a finite-dimensional C-space, Zariski-dense in Jm(X)a.
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Now suppose that (Y, s|Y ) is a differential algebraic subvariety of (X, s),
in the obvious sense. That is Y is an irreducible subvariety of X (over U)
and (Y, s|Y )] is Zariski-dense in Y . Then if a ∈ Y , we identify Jm(Y )a with
its image in Jm(X)a. If moreover a ∈ Y ] (that is ∂(a) = s(a)) then the
canonical U -linear surjection fromMX,a/Mm+1

X,a toMY,a/Mm+1
Y,a is a map of

∂-modules. Thus Jm(Y ])a is a C-subspace of Jm(X])a. In fact Jm(Y ])a is
precisely Jm(Y )a ∩ Jm(X])a.

With the above notation:

Lemma 2.4 Let (Y, s|Y ), (Z, s|Z) be differential algebraic subvarieties of
(X, s). Let a ∈ Y ] ∩ Z] be nonsingular on each of Y, Z. Then Y = Z if
and only if Jm(Y ])a = Jm(Z])a for all m.

Proof. If the right hand side holds, then by taking Zariski closures in Jm(X)a
and using Lemma 2.2, we see that Jm(Y )a = Jm(Z)a (as U -subspaces of
Jm(X)a) for each m, and thus Y = Z by 1.3(iv).

We can now state and prove the main result in the case of differentially closed
fields of characteristic zero. The result, roughly speaking says the following:
work inside a definable set of finite Morley rank in U . Fix a generic point
in this set. Then any definable family F of definable sets all of which pass
through a, is (generically) internal to the constants.

It is convenient to use the language of types, canonical bases, and in-
ternality. We work in the structure (U ,+, ·, ∂). K denotes a small differ-
ential subfield. If a ∈ Un, we say that tp(a/K) is finite-dimensional if the
transcendence degree of the differential field generated by K and a (namely
K(a, ∂a, ∂2(a), ..)) over K is finite. Equivalently tp(a/K) has finite Morley
rank, or finite U -rank.

Theorem 2.5 Suppose tp(a/K) is finite-dimensional and stationary. Let b
be a tuple such that tp(a/K, b) is stationary. Let c = Cb(tp(a/K, b)). Then
tp(c/K, a) is internal to C. That is, for some d independent from c over K, a,
c is definable over K, a, d together with some tuple from C.

Proof. We may replace a by anything interdefinable with it. So replac-
ing a by a suitable sequence (a, ∂a, ...∂r(a)), we may assume, using finite-
dimensionality of tp(a/K) and the properies of a derivation, that ∂(a) ∈
K(a). Again adjoining to a a finite part of K(a), we may assume that
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∂(a) = s(a) where s(x) is a polynomial function defined over K. Assume
a ∈ Un. Let X ⊆ Un be the locus of a over K, that is the irreducible variety
over K with a as a K-generic point. Then (X, s) is a differential algebraic
variety defined over K, and a ∈ X]. Let Y be the irreducible subvariety
of X defined over K < b > with a as a K < b >-generic point. So again
(Y, s|Y ) is differential algebraic and a ∈ Y ]. Note that if c generates the
(algebraic-geometric) field of definition of Y then c is interdefinable over K
with Cb(tp(a/K, b)). We must show that tp(c/K, a) is internal to C. As in
Remark 1.3, Jm(X)a is a U -vector space defined over K (all m). By the
above remarks, Jm(X])a is a finite-dimensional vector space over C. Let dm
be a C-basis for Jm(X])a, chosen such that d = (d1, d2, ...) is independent
from c over K, a. For each m, we have by virtue of the basis dm an isomor-
phism of Jm(X])a with Crm for some rm. Let em ⊂ C be a finite tuple such
that the image of Jm(Y ])a (a subspace of Jm(X])a) in Crm is defined over
em. Let e = (e1, e2, ...).
Claim c ∈ dcl(K, a, d, e).
Proof. Let f be an automorphism of U fixing K, a, d, e pointwise. (f(Y ), s)
is also a differential algebraic subvariety of (X, s) and a ∈ f(Y )] = f(Y ]).
Clearly f(Jm(Y ])a) = Jm(f(Y )])a (any m). As f fixes dm and em, f fixes
Jm(Y ]) (setwise). Hence Jm(Y ])a = Jm(f(Y )])a for all m. By Lemma 2.4,
f(Y ) = Y . Thus f(c) = c.

The claim is proved and also the theorem.

Corollary 2.6 (i) Let G be a connected finite-dimensional K-definable dif-
ferential algebraic group (that is a connected group of finite Morley rank
definable over K in U). Let a ∈ G with p = tp(a/K) stationary. Let H < G
be the left-stabilizer of p. Then tp(Ha/K) is internal to C.
(ii) Let p(x) = tp(a/K) be a stationary type of U-rank 1 (in U). Then p is
either modular or it is nonorthogonal to C.

Proof. This follows quickly from the theorem as in [19].

As is well-known, the particular case of Corollary 2.6(i) when G is a differ-
ential algebraic subgroup of a semiabelian variety gives (modulo the finite-
dimensionality of the Manin kernel) the Mordell-Lang conjecture for function
fields (characteristic zero) in the form stated in [11]: Suppose k < K are al-
gebraically closed fields of characteristic zero, A is a semi-abelian variety over
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K, X is a subvariety of X defined over K, Γ is an abstract subgroup of A(K)
of finite rational rank with A(K) ∩ Γ Zariski-dense in X, and X has finite
stabilizer. Then X is isotrivial, that is isomorphic to a variety defined over k.
Moreover, up to translation this isomorphism is induced by an isomorphism
(of algebraic groups) between some semiabelian subvariety of A and some
semiabelian variety defined over k.

In fact having defined the differential set-up and a suitable finite-dimensional
differential algebraic subgroup of A containing Γ one just plugs into the end
of Hrushovski’s proof in [11].

We complete this section by stating an isotriviality result whose proof re-
quires very little from definability in differentially closed fields.

Proposition 2.7 Let X be an affine variety defined over K < U . Let s be
a polynomial map on X over K such that X] = {x ∈ X : ∂x = s(x)} is
Zariski-dense in X. Let a ∈ X]. Let T be an irreducible subvariety of the
Hilbert scheme of X such that that Yt (the subvariety of X corresponding to
t) contains a for all t ∈ T and such that for generic t ∈ T , Yt is irreducible
and a is a generic point of Yt over K, t. Then T is birationally isomorphic
to a variety defined over C.

Sketch of proof. Firstly, for each m, let us choose, using 2.2, a basis dm for
Jm(X)a (over U) such that, with the corresponding identification of Jm(X)a
with some U rm , Jm(X])a is precisely Crm . By Fact 1.2, for some sufficiently
large m, and for suitable k, we obtain a birational isomorphism f of T with
a subvariety Z of Grk(U rm) (where Grk is the variety of k-dimensional linear
subspaces of U rm). Now for t ∈ T generic over K, a, dm (in the algebraic-
geometric sense), a is a generic point of Yt and thus (Yt, s|Yt)] is Zariski-dense
in Yt. It follows that Jm(Y ]

t )a is Zariski-dense in Jm(Yt)a ⊆ Jm(X)a = U rm .
Thus Jm(Yt)a is defined over C and so f(t) ∈ Z(C). Thus Z has a Zariski-
dense set of C-rational points, so is defined over C.

3 Difference fields of characteristic 0

We work here in the context of existentially closed difference fields of char-
acteristic zero, that is in a big model of ACFA0. This theory was studied in
detail in [7], and the Zilber dichotomy (types of SU -rank 1 are modular or
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nonorthogonal to the fixed field) was proved there, using various arguments.
Here we work essentially at the quantifier-free level (that is with just dif-
ference equations). The required difference jet space theory turns out to be
essentially trivial. (U ,+, ., σ) denotes a saturated model of ACFA0. We will
use freely elementary facts about ACFA0.

We need one more fact about jet spaces of varieties.

Fact 3.1 Suppose V1, V2, and W ⊆ V1 × V2 are irreducible varieties defined
over a field K (characteristic zero). Suppose that the projections πi : W → Vi
are dominant and generically finite-to-one for i = 1, 2. Let (a, b) be a
generic point of W over K. Then Jm(W )(a,b) induces an isomorphism be-
tween Jm(V1)a and Jm(V2)b.

We now work in the saturated model of ACFA0. K denotes an (alge-
braically closed) small difference subfield of U . For V a variety defined over
K, V σ denotes the image of V under σ (also defined over K). Rather than
define difference jet spaces in general we will restrict ourselves to a special
situation. Let V , W be irreducible varieties over K with the property that
W ⊆ V × V σ, and the projections π1, π2 from W to V, V σ are dominant
and generically finite-to-one. Let a be a generic point of V over K such
that (a, σ(a)) ∈ W (so (a, σ(a)) is a generic point of W in the sense of
algebraic geometry). By Fact 3.1, Jm(W )(a,σ(a)) “is” (that is induces) an iso-
morphism f (= fV,W,a,b) (in the algebraic-geometric sense) between Jm(V )a
and Jm(V σ)σ(a) as U -vector spaces.

With this notation we have:

Lemma 3.2 {u ∈ Jm(V )a : σ(u) = f(u)} is a finite-dimensional vector
space over Fix(σ) and is Zariski-dense in Jm(V )a.

Proof. As f is a linear map between the two finite-dimensional U -vector
spaces we get the first part. For the rest note that Jm(V σ)σ(a) is the image
of Jm(V )a. As f is an isomorphism between these two spaces, the axioms
for ACFA yield a generic point x ∈ Jm(V )a such that f(x) = σ(x).

We now discuss canonical bases of types in ACFA. On the one hand ACFA
is simple and there is a specific notion of the canonical base for Lascar strong
types (amalgamation bases) in simple theories (see [10]). On the other hand,
ACFA is quantifier-free stable (in fact quantifier-free ω-stable). For K an
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algebraically closed difference field, and a a tuple, by Cb(qftp(a/K)) we
mean the unique smallest difference subfield K0 of K such that qftp(a/K)
does not fork over K0 and qftp(a/K0) is stationary. It can also be described
as the difference field generated by the field of definition of the proalgebraic
variety V over K whose K-generic point is (σi(a))i∈Z.

In any case, working inACFA we have that Cb(qftp(a/K)) ⊆ dcl(Cb(tp(a/K))
and Cb(tp(a/K)) ⊆ acl(Cb(qftp(a/K)).

aclf (−) denotes field-theoretic algebraic closure.

Lemma 3.3 Suppose that σ(a) ∈ aclf (K, a). Let K1 ⊃ K be algebraically
closed (in ACFA). Let V1 be the irreducible variety over K1 with a as
a K1-generic point. Then the field of definition c of V1 is contained in
Cb(qftp(a/K1)) and the latter is contained in the algebraic closure of K
and c.

Proof. It is clear that the field of definition of V1 is contained in Cb(qftp(a/K1)).
For the second part, note that a is independent from K1 over K, c in the sense
of ACF . Our hypotheses imply that (σi(a) : i ∈ Z) is contained in aclf (K, a),
whereby (σi(a) : i ∈ Z) is independent from K1 over K(c) in the sense of
ACF .

Lemma 3.4 Let K,V, V σ,W, a, f be as in the discussion before 3.2. Let
K1 ⊇ K be an algebraically closed difference field, and let V1 be the algebraic
variety over K1 with generic point a. Then f |J(V1)a is an isomorphism with
J(V σ

1 )σa.

Proof. Let W1 be the irreducible variety over K1 with generic point (a, σa).
Then W1 ⊆ W . By 3.2, J(W1)(a,σa) induces an isomorphism f1 between
J(V1)a and J(V σ

1 )σa. But J(W1)(a,σa) ⊆ J(W )(a,σa) and the latter induces f .
So f1 = f |J(V1)a.

A type p(x) over algebraically closed K is said to be almost internal to a
∅-definable set X (such as Fix(σ)), if for some A ⊃ K and a realizing p such
that a is independent from A over K, a ∈ acl(A,X).

Theorem 3.5 Let tp(a/K) be finite-dimensional, and b be such that b =
Cb(qftp(a/K, b)), Then tp(b/acl(K, a)) is almost internal to Fix(σ).
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Proof. Replacing a by some (a, σ(a), .., σr(a)) we may assume that aclf (K, a) =
aclf (K, σ(a)). Let V be the variety of a over K, and W the variety of
(a, σ(a)) over K. So V σ is the variety of σ(a) over K. (In fact by choosing
r sufficiently large, the variety W will determine qftp(a/K).) For m ≥ 1
let Lm = Jm(V )a, and Lmσ = {u ∈ Jm(V )a : σ(u) = f(u)}. By 3.2, Lmσ
is a finite-dimensional vector space over Fix(σ), Zariski-dense in Lm. Let
V1 be the variety of a over aclσ(K, b), and b1 the field of definition of V1.
So Jm(V1)a is a K-subspace of Lm. By 3.3, b ∈ acl(K, b1). By 3.4 and the
axioms for ACFA, {u ∈ Jm(V1)a : σ(u) = f(u)} is a Zariski-dense subset of
Jm(V1)a as well as being a Fix(σ) subspace of Lmσ . The rest of the proof is
a copy of that of Theorem 2.5.

Again as in [19] one deduces the Zilber dichotomy for types of SU -rank 1 in
ACFA0 (modular or nonorthogonal to the fixed field) as well as results for
definable groups of finite SU -rank (if G is quantifier-free definable and X is
a difference algebraic subvariety of G then X/Stab(X) is almost internal to
Fix(σ)). We do not see any improvement over the proof of the modularity
of suitable difference algebraic subgroups of semi-abelian varieties relevant
to Manin-Mumford in [12]. But, modulo this, our results give direct proofs
of the results for arbitrary commutative algebraic groups (Corollary 4.4.2 of
[12]).

4 Further remarks on jet bundles and pro-

longations

For the benefit of the interested reader we give another explicit description of
Jm(X])a (which was actually part of our original approach before we noticed
the rather simpler approach using ∂-modules).

We work again in the saturated differentially closed field (U ,+, ., ∂). X is
an irreducible subvariety of Un defined over K. The first (Buium) prolonga-
tion τ(X) (implicit in our treatement above) is the subvariety of U2n defined
by the equations P (x1, .., xn) = 0 for P ∈ IX together with the equations∑
i((∂P/∂xi)(x))yi + P ∂(x) = 0 for P ∈ IX . τ(X) projects canonically onto

X. Let s : X → τ(X) be a section, defined over K, and X] = {a ∈ X :
(a, ∂(a)) = s(a)}.

12



Let J = Jm for some fixed m ≥ 1. From 1.3(v) we have J(s) : J(X) →
J(τ(X)). We will exhibit a reasonably canonical morphism h : J(τ(X)) →
τ(J(X)) such that for a ∈ X], J(X])a = {u ∈ J(X)a : ∂(u) = h ◦ J(s)(u)}.

Let D be the set of differential operators of order at most m in variables
x1, .., xn as in 1.3(i), with the natural identifications. Let D1 be the same
thing, but with variables x1, .., xn, y1, .., yn. Note that D is canonically a
subset of D1. J(X) = {(a, uD)D∈D : a ∈ X,

∑
DDP (a)uD = 0, P ∈ IX}

and J(τ(X)) = {(a, b, uD)D∈D1 : (a, b) ∈ τ(X),
∑
D∈D1

DQ(a, b)uD = 0, Q ∈
Iτ(X)}.

For D ∈ D, let LD be the set of those operators in D1 which can be
obtained from D by replacing exactly one occurrence of some ∂/∂xi by ∂/∂yi.
So for example if D is ∂2/∂x2

1 then LD = {∂2/∂x1∂y1}, and if D = ∂2/∂x1∂x2

then LD = {∂2/∂x1∂y2, ∂
2/∂x2∂y1}.

Now for (a, b, uD)D∈D1 ∈ J(τ(X)), let h(a, b, uD)D∈D1 = (a, uD, b, vD)D∈D
where vD =

∑
D′∈LD uD′ .

We leave the proof of the following to the interested reader:

Lemma 4.1 (i) h : J(τ(X)) → τ(J(X)). Moreover if πi (i = 1, 2) are
the natural projections from J(τ(X)), τ(J(X)) respectively to τ(X), then
π2.h = π1.
(ii) for a ∈ X], J(X])a = {u ∈ J(X)a : h(J(s)(a, u)) = (a, u, b, ∂u)}, where
s(a) = (a, b) ∈ τ(X).

5 Remarks on the positive characteristic case

We mention here some problems and partial results concerning the general-
ization of the results above to the positive characteristic cases. The general
problem here is that certain relevant finite morphisms need not be separable
and so will not induce isomorphisms on jet spaces.

Let us first consider ACFAp. As the πi in Fact 3.1 need not be separable,
we may not obtain a linear isomorphism between J(V1)a and J(V2)b. In fact
this cannot even be expected, as there are many different “fixed fields”,
Fix(σnFrm) for n,m ∈ Z. So the most one can hope for in 3.5 is almost
internality to the union of all fixed fields. The obvious idea is as follows:
suppose we are given finite-dimensional tp(a/K) where a is a generic point
of V overK and (a, σ(a)) is a generic point ofW overK where the projections
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from W to both V and V σ are finite-to-one. Replace σ by τ = σnFrm (still
yielding a model of ACFAp). (a, τ(a)) is now a generic point of some W ′

over K which again projects finite-to-one to V and V τ . Even though these
projections need still not be separable, they may induce an isomorphism
between some nonzero subspace of J(V )a and one of J(V τ )τ(a). Try to show
that the union of all these subspaces of J(V )a (as τ varies) generates (or is
Zariski-dense) in J(V )a. However it is not clear if this approach works even in
some specific examples such as the following pointed out by Zoe Chatzidakis:
Let V be 2-space and W = {(x1, x2, y1, y2) : y1 = x2, y

p
2 + xp1 + y1 = 0}.

Let us now consider the characteristic p differential case. By this we mean
separably closed fields of finite (nonzero) Ershov invariant e. It is conve-
nient for our purposes to consider such fields equipped with several Hasse
derivations (mainly because the ∂-module theory extends smoothly). A the-
ory was developed by Messmer and Wood [18], and an alternative approach
was recently developed by the second author [21]. In the case e = 1 these
approaches essentially coincide. For convenience we restrict our attention to
this case (e = 1) although everything we say generalizes (using the theory
in [21]). So the relevant theory is the theory SCHp,1 of separably closed
fields K of characteristic p and Ershov invariant 1, equipped with a strict
Hasse (or iterative) derivation. The Hasse derivation is by definition a se-
quence D = (D0, D1, ...) of additive maps from K to K such that D0 = id,
Dn(xy) =

∑
i+j=nDi(x)Dj(y) and

Di ◦Dj(x) =

(
i+ j
i

)
Di+j(x) for all n, i, j.

Strictness means that Kp is the field of constants of D1. The theory is
complete with quantifier-elimination in the obvious language (the language
of rings together with the Di’s), as well of course as being stable. If {t} is
a p-basis of K over Kp, then by considering a suitable Wronskian, we see
that for any x ∈ K, the sequence (Di(x) : i < pn − 1) is birational over
{Di(t

j) : i, j < pn − 1} with the sequence (ai : i < pn − 1) of pnth powers in
K such that x =

∑
i ait

i.
Work in a saturated model (U ,+, ., Di)i of SCHp,1. K will denote a

relatively algebraically closed substructure (or even a model). C is the field of
absolute constants of U , that is {a ∈ U : Di(a) = 0 for all i}. C coincides with
∩nUp

n
. In fact more precisely Upn is the common zero set of D1, ..., Dpn−1 .
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Definition 5.1 (i) tp(a/K) is thin if trdeg(K(Di(a) : i < ω)/K) is finite.
(ii) tp(a/K) is very thin if L = K(Di(a) : i < ω) is finitely separably gener-
ated over K, that is if there is a finite tuple b from K such that L is separably
algebraic over K(b).

Remark 5.2 (i) This notion of thinness coincides with that in [11].
(ii) Any extension of a very thin type is very thin.

Our partial result is:

Proposition 5.3 Let tp(a/K) be very thin. Then for any b, tp(Cb(stp(a/K, b)/K, a)
is internal to C.

We sketch how to adapt the previous arguments. The main point is that
for any m the mth jet space at a of a suitable variety is (as a U -vector space)
equipped with a D-module structure, whose solution set is finite-dimensional
over C and Zariski-dense. The proof of Theorem 2.5 then goes through.

Let L = K(Di(a) : i < ω). By the properties of the Hasse derivation
D and as tp(a/K) is assumed to be be very thin, we can find finite tuples
a0 ⊆ a1 ⊆ a2... in L such that
(i) a ⊆ a0,
(ii) L = K(a0, a1, ....),
(iii) K(ai) is closed under D0, .., Dpi , and
(iv) L is separably algebraic over K(a0).

Let Di = {D0, .., Dpi}. Let Xi be the (absolutely irreducible) variety over
K whose generic point is ai. Let fi : Xi → Xi−1 be the surjective morphism
induced by the inclusion ai−1 ⊆ ai. Let gi : Xi → X0 be likewise. Let Oi
be the local ring of rational functions over U on Xi which are defined at
ai. As K(ai) is closed under the operators in Di, Oi is naturally equipped
with a “truncated” Hasse ring structure, namely with an action of D0, .., Dpi

extending the action on U and satisfying the relevant properties. Clearly the
maximal ideal Mi of Oi (that is, the functions which are 0 at ai) is a Di
subring, as are all powers ofMi. Let us fix m ≥ 1. So the finite-dimensional
U -vector space Vi =Mi/Mm+1

i is equipped with a Di-module structure. In
particular, Vi is a Dj-module for j < i. Now, as fi is etale, it induces an
isomorphism f ∗i between Vi−1 and Vi, which is moreover an isomorphism of
Di−1 modules. So, by virtue of the isomorphisms g∗i , the U -vector space is
equipped with a D-module structure. Let Jm = Jm(X0)a0 be the dual space
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to V0 (the mth jet space to X0 at a0). As in Remark 2.3, Jm is equipped
with a D-module structure DJm say. Either doing it oneself, or appealing to
[17], the 0-set Jm,] of DJm is a finite-dimensional vector space over C. In fact
Jm can be given a C -structure such that Jm,] = Jm(C). That is, Jm has a
U -basis v1, .., vr say, which is also a C-basis for Jm,].

Now the proof of 2.5 goes through. Given a stationary extension tp(a/K ′)
of tp(a/K), let Y0 the variety over K ′ whose generic point is a0. Let J ′m

be the the mth jet space of Y0 at a0 as defined above. J ′m,] embeds in
Jm,], and Y0 is determined by the images of J ′m,] in Jm,] for all m. Thus
tp(Cb(tp(a/K ′))/K, a) is internal to C.

Remark 5.4 Suppose that A is an ordinary semi-abelian variety over de-
finably closed K < U . Let A] = ∩npn(A(U)) (a type-definable connected
subgroup of A(U)). Let a be a generic point of A] over K. Then tp(a/K) is
very thin.

Proof. We will make use of the “Verschiebung” as described in [1] to which
the reader is referred for more background and references. First, what is the
meaning of “ordinary”? Let us work for now geometrically, that is inside
an algebraically closed field. The semi-abelian variety A is by definition an
extension of an abelian variety B by an algebraic torus T . Let b = dim(B).
Then A is said to be ordinary if the group of p-torsion point of the abelian
part B of A is precisely (Z/pZ)b (which implies that the group of pt-torsion
points of B is (Z/ptZ)b for all t > 0).

Now for the Verschiebung. We can hit the coefficients defining A with the
Frobenius Fr to obtain another semiabelian variety A(p). Moreover, acting
on coordinates, Fr yields a bijective isogeny Fr : A → A(p). The dual
isogeny from A(p) to A is called the Verschiebung V , and we have that both
V ◦ Fr : A → A and Fr ◦ V : A(p) → A(p) are just multiplication by p in
the relevant groups (that is x→ px in additive notation). Similarly the dual
isogeny Vn to Frn : A→ A(pn) has the feature that composition with Frn is
multiplication by pn.

The main fact we use is:
(*) if A is ordinary then each Verschiebung map Vn : A(pn) → A is separable.

Now let A,K,A], a be as in the hypotheses of the proposition. We will
show that Di(a) is separably algebraic over K(a) for all i. Fix n. Then by
definition of A] there is c ∈ A(U) such that a = pnc (in the group A written
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additively). As multiplication by pn in A is the same as Vn ◦ Frn, it follows
that a = Vn(b) where b = Frn(c) = cp

n
, and so a ∈ K(cp

n
). It follows that

D0(a), .., Dpn−1(a) ∈ K(cp
n
). But by (*) b = cp

n
is separably algebraic over

K(a). The same is thus true of the Di(a). This completes the proof.

Proposition 5.3 and Remark 5.4 thus yield a relatively direct proof of the
Mordell-Lang conjecture for function fields (with prime-to-p division points
in place of all division points) in positive characteristic, assuming the semi-
abelian variety A to be ordinary. This case however was already covered by
part (3) of Theorem A in [1].

Finally let us give an example of a thin but not very thin type (in the context
of SCHp,1). Let K be an elementary submodel of U . In particular K contains
a p-basis {t} of U . We may assume that Dpn(tp

n
) = 1 for all n ≥ 0. Let

c ∈ C \K. By saturation of U we can find an element a ∈ U , transcendental
over K(c), such that a−(ct+cp

−1
tp+..+cp

−n
tp
n
) is a pn+1th power in U for all

n. Then Dpn(x) = cp
−n

for all n ≥ 0, and K(D0(a), D1(a), ...) is not finitely
separably generated over K (but is of course of transcendence degree 2 over
K). On the other hand tp(a/K) is 2-step analyzable in C: first c ∈ dcl(K, a).
Let K ′ = dcl(K, c) = K(c, cp

−1
, cp
−2
, ...). Then a /∈ K ′, but Di(a) ∈ K ′ for

all i > 0, and so the difference of two realizations of tp(a/K ′) is in C.

Clearly a type of U -rank 1 which is nonorthogonal to C is very thin. We do
not know of any type of U -rank 1 which is thin but not very thin.
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