1 Introduction

Let $f : D \to E$ be a definable map between definable classes. The following theorem is well known:

Theorem 1 ([1], [2, V 6.8]) *If E has Morley rank β and the Morley rank of all fibers $f^{-1}(e)$ is bounded by α. Then*

1. *If $\alpha = 0$ D has Morley rank at most β.*
2. *If $\alpha > 0$ the Morley rank of D is bounded by $\alpha(\beta + 1)$.*

It seems to be less well known that this theorem gives the optimal bound. We will prove:

Lemma 2 *For all $\alpha > 0$ and all β there is a theory T and (in the monster model of T) a definable map $f : D \to E$ such that*

a) *E has Morley rank β*

b) *the Morley rank of all fibers of f is α*

c) *D has Morley rank $\alpha \cdot (\beta + 1)$.*

In section 4 we discuss a bound for the Morley rank of D if the Morley rank of all fibers of f is smaller than a limit ordinal α.

In the sequel let $R(F)$ denote the (Morley) rank of the definable set F.

Revision: 1.9

†March 2011: Section 5 added.

‡May 2013: Correction of the first part of the proof of Theorem 1

§April 2014: Further simplification of the first part of the proof of Theorem 1. Typo in the formulation of the problem after Theorem 5.

¶March 2015: Remark 6 added.
2 Proof of Theorem 1

We include a proof of Theorem 1 for the convenience of the reader.

Let \(E \) have rank \(\alpha \) and \(A \) be a set of parameters. We call an element \(e \) of \(E \) generic over \(A \) if it is not contained in any \(A \)-definable set of smaller rank than \(\alpha \). \(E \) has always generic elements (in the monster model). Note that all generics of \(E \) have the same type over \(A \) if \(E \) has degree one.

First we handle case 1, where \(\alpha = 0 \). Let \(f : D \to E \) have finite fibers. We prove

\[
R(D) \leq R(E)
\]

by induction on \(\beta = R(E) \).

We may assume that \(E \) has degree 1. Let \(D_i \) be an infinite family of disjoint definable subsets of \(D \). We have to show that almost all of them have smaller rank than \(\beta \). Let \(e \in E \) be generic over the parameters over which \(f, D, E \) and the \(D_i \) are defined. Almost all of the \(D_i \) do not intersect \(f^{-1}(e) \). So these \(f(D_i) \) do not contain \(e \) and have therefore smaller rank than \(\beta \). So by induction almost all \(D_i \) have smaller rank than \(\beta \).

For the case 2 we need a lemma. If \(E \) has Morley degree one and \(e \in E \) is generic over the relevant parameters we call the (possibly empty) set \(f^{-1}(e) \) a generic fiber of \(f \).

Lemma 3 Let \(E \) have Morley degree one and \(\alpha \) be the rank of the generic fiber of \(f \). If

\[
\gamma + \alpha < R(D),
\]

\(D \) has a definable subset \(D' \) such that \(f \mid D' \to E \) has finite generic fiber and

\[
\gamma < R(D').
\]

Proof: We may assume \(\alpha > 0 \). \(D \) contains then an infinite family \(D_i \) of definable disjoint sets having at least rank \(\gamma + \alpha \). Let \(e \in E \) be generic. Then for one index \(i \) the rank of \(D_i \cap f^{-1}(e) \) is smaller than \(\alpha \). By induction on \(\alpha D_i \) contains a \(D' \) as required.

We prove case 2 of the theorem by induction on \(\beta \). We may assume that \(E \) has degree one. If

\[
\alpha \cdot \beta + \alpha < R(D),
\]

by the last lemma, \(D \) contains a definable \(D' \) of rank bigger than \(\alpha \cdot \beta \) such that the generic fiber of \(f \mid D' \) has finitely many, say \(k \) many, elements. For

\[
E^* = \{ e \in E \mid D' \cap f^{-1}(e) \text{ has cardinality } k \},
\]

the complement \(E \setminus E^* \) has a rank \(\beta' < \beta \). Since (by case 1) \(D' \cap f^{-1}(E^*) \) has at most rank \(\beta \), the rank of \(D'' = D' \cap f^{-1}(E \setminus E^*) \) is bigger than \(\alpha \cdot \beta \geq \alpha (\beta' + 1) \). This contradicts the induction hypothesis applied to \(f \mid D'' : D'' \to E \setminus E^* \).
3 Proof of Lemma 2

We deal only with countable α and β. (The proof in the uncountable case is essentially the same.) So in the sequel infinite means countably infinite.

For a fixed $\alpha > 0$ and for all β we will construct models

$$\mathcal{M}_\beta = (D_\beta, E_\beta, f_\beta),$$

which consist of a two sorts D_β and E_β, a map $f_\beta : D_\beta \to E_\beta$ and unary predicates on D_β and E_β such that

a) E_β has Morley rank β

b) the Morley rank of all fibers of f_β is α

c) D_β has Morley rank $\alpha \cdot (\beta + 1)$.

d) \mathcal{M}_β is saturated and has quantifier elimination.

We start with a structure $\mathfrak{A} = (A, P_i)_{i \in I}$, where A is an infinite set and the P_i are unary predicates which ensure that \mathfrak{A} has rank α (and is saturated). For the model \mathcal{M}_0 we take $(A, E_0, f_0, P_i)_{i \in I}$, where E_0 consists of one point and f_0 is the constant map.

We give the following case a special treatment: Assume that α is finite and β is a limit cardinal. We take for E_β any set with unary predicates giving it rank β. Choose a surjection $f_\beta : D_\beta \to E_\beta$ with infinite fibers and sets $X^a \subset D_\beta, (a \in A)$, which intersect each fiber of f_β in exactly one point. From the predicates P_i we define the predicates $Q_i = \bigcup_{a \in A} X^a$. This is our \mathcal{M}_β. The sets X^a inherit rank β from E_β. Whence D_β has rank $\beta + \alpha$, which in our case equals $\alpha(\beta + 1)$.

Now assume that α is infinite or β is a successor ordinal. Also assume that for all $\beta' < \beta$ the structures $\mathcal{M}_{\beta'}$ are constructed. Let α' be such that $1 + \alpha' = \alpha$ and $\mathfrak{A}' = (A', P'_i)_{i \in I'}$ be the α'-version of \mathfrak{A}. To construct \mathcal{M}_β we take infinite sets D_β and and E_β and a surjective map $f_\beta : D_\beta \to E_\beta$ with infinite fibers.

On D_β and E_β we choose two families $(X^a)_{a \in A'}$ and $(E^{a,i})_{a \in A', i \in \omega}$ of disjoint subsets (and introduce predicates for them) such that

1. All intersections $X^a \cap f_\beta^{-1}(e)$ and the differences $f_\beta^{-1}(e) \setminus \bigcup_{a \in A'} X^a$ are infinite.

2. The difference $E_\beta \setminus \bigcup_{a \in A', i \in \omega} E^{a,i}$ is infinite. The cardinality of the $E^{a,i}$ will be specified later.

\[1\text{If } \alpha' = 0 \text{ A' is just any finite set}\]
From the predicates P'_i we define also the predicates

$$Q_i = \bigcup_{a \in P'_i} X^a.$$

Let $(\beta_i)_{i \in \omega}$ be an enumeration of the ordinals $\beta' < \beta$ where all β' occur infinitely often. In our last step, for each $a \in A'$ and $i \in \omega$ we introduce new predicates for subsets of $E^{\alpha,i}$ and for subsets of $D^{\alpha,i} = f^{-1}_\beta(E^{\alpha,i}) \cap X^a$

such that with the new predicates the structure $f_\beta \restriction D^{\alpha,i} : D^{\alpha,i} \rightarrow E^{\alpha,i}$ looks like \mathcal{M}_β. This also tells us the right cardinality of the $E^{\alpha,i}$. This completes the construction of \mathcal{M}_β.

It is easy to check that \mathcal{M}_β has quantifier elimination and is saturated.

Since the $E_{a,i}$ have rank β_i, E_β has rank β.

Without the structure imprinted on the $D_{a,i}$ the fibers look like \mathcal{M}' with each point blown up to an infinite set and have therefore rank $1 + \alpha' = \alpha$. The structure on $D_{a,i}$ adds one set of rank α on the fiber. Whence the fibers have rank α.

Each $D^{\alpha,i}$ has rank $\alpha \cdot (\beta_i + 1)$. We have to distinguish two cases:

1. β is a successor ordinal: Then X^α has at least rank $\alpha \cdot \beta + 1$ and D_β has at least rank $\alpha \cdot \beta + 1 + \alpha' = \alpha(\beta + 1)$.

2. β is a limit ordinal and α is infinite: Then X^α has at least rank $\alpha \cdot \beta$ and D_β the rank $\alpha \cdot \beta + \alpha' = \alpha \cdot \beta + \alpha = \alpha \cdot (\beta + 1)$.

4 Fiber rank smaller than a limit ordinal

The following problem is left open by Theorem 1: Let α be a limit ordinal. If E has rank β and the ranks of all fibers of $f : D \rightarrow E$ are smaller than α can we say more about $R(D)$ than just $R(D) \leq \alpha(\beta + 1)$? The answer is yes:

Theorem 4 Let α be a limit ordinal and β be arbitrary

1. Let $f : D \rightarrow E$ be a definable map between definable classes: Assume E has Morley rank β and that the Morley rank of all fibers $f^{-1}(e)$ is smaller than α. Then the Morley rank of D is smaller than $\alpha(\beta + 1)$.

2. For all $\gamma < \alpha$ and all β there is a theory T and (in the monster model of T) a definable map $f : D \rightarrow E$ such that
a) E has Morley rank β

b) the Morley rank of all fibers of f is smaller than α

c) D has Morley rank $\alpha \cdot \beta + \gamma$.

Part 1 has the same proof as Theorem 1. But part 2 needs a modification of the construction in Lemma 2.

Again we deal only with countable α and β. By recursion on β we construct models

$$\mathfrak{M}_\beta = (D_\beta^\gamma, E_\beta^\gamma, f_\beta^\gamma)$$

such that

a) E_β^γ has Morley rank β

b) the Morley rank of all fibers of f_β^γ is smaller than α

c) D_β^γ has Morley rank $\alpha \cdot \beta + \gamma$.

d) \mathfrak{M}_β is saturated and has quantifier elimination.

We construct \mathfrak{M}_β as in the proof of Lemma 2 from a structure $\mathfrak{A} = (A, P_i)_{i \in I}$ of rank γ. If $\beta > 0$ assume that for all $\beta' < \beta$ (and all $\gamma < \alpha$) the structures $\mathfrak{M}_{\beta'}$ are constructed. Take infinite sets D_β^γ and and E_β^γ and a surjective map $f_\beta^\gamma : D_\beta^\gamma \to E_\beta^\gamma$ with infinite fibers. Then choose two families $(X^a)_{a \in A}$ and $(E^a,i)_{a \in A, i \in \omega}$ of disjoint subsets (and introduce predicates for them) such that

1. All intersections $X^a \cap (f_\beta^\gamma)^{-1}(e)$ and the differences $(f_\beta^\gamma)^{-1}(e) \setminus \bigcup_{a \in A} X^a$ are infinite.

2. The difference $E_\beta^\gamma \setminus \bigcup_{a \in A, i \in \omega} E^{a,i}$ is infinite.

Define again the predicates $Q_i = \bigcup_{a \in P_i} X^a$.

Finally we introduce new unary predicates on $E^{a,i}$ and

$$D^{a,i} = (f_\beta^\gamma)^{-1}(E^{a,i}) \cap X^a$$

such that with the new predicates the structure

$$\mathfrak{N}^{a,i} = (D^{a,i}, E^{a,i}, f_\beta^\gamma \upharpoonright D^{a,i})$$

looks as follows:

Case 1: $\beta = \beta' + 1$ is a successor.

Then choose an enumeration $(\gamma_i)_{i \in \omega}$ of the ordinals below α and let $\mathfrak{N}^{a,i}$ look like $\mathfrak{M}_{\beta'}^{\gamma_i}$.

5
Case 2: β is a limit ordinal.

Let $(\gamma_i)_{i \in \omega}$ enumerate the ordinals below β and let $\mathfrak{M}^{a,i}$ look like \mathfrak{M}^{β}. In the successor case $D^{n,i}$ has rank $\alpha \cdot \beta' + \gamma_i$, X^a has rank $\alpha \cdot \beta' + \alpha = \alpha \cdot \beta$. In the limit case $D^{n,i}$ has rank $\alpha \cdot \beta_i$ and it follows again that X^a has rank $\alpha \cdot \beta$. This implies that D^γ has rank $\alpha \cdot \beta + \gamma$.

5 A better bound

The following theorem implies both Theorem 1 (2) and Theorem 4 (1):

Theorem 5 ([3, Exercise 6.4.4]) If E has Morley rank β, Morley rank of all fibers $f^{-1}(e)$ is bounded by $\alpha > 0$ and the Morley rank of the generic fibers is bounded by α^{gen}, then the Morley rank of D is bounded by

$$\alpha \beta + \alpha^{\text{gen}}.$$

The proof is a slight variation of the proof of Theorem 1. One proves similarly:

Remark 6 If β is a limit ordinal, $\beta < \alpha \beta$, and α^{gen} is finite, then the Morley rank of D is smaller than $\alpha \beta + \alpha^{\text{gen}}$.

Slight modifications of the constructions above show that this bounds are optimal: If β and $0 \leq \alpha^{\text{gen}} \leq \alpha$ are given, there are two cases:

1. If the conditions of Remark 6 are not satisfied, there is an example D with Morley rank $\alpha \beta + \alpha^{\text{gen}}$.

2. If the conditions of Remark 6 are satisfied, for every γ smaller than $\alpha \beta + \alpha^{\text{gen}}$ there is an example with at least Morley rank γ.

References

