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Abstract

We introduce a new notion of computable function on RN and prove
some basic properties. We give two applications, first a short proof of
Yoshinaga’s theorem that periods are elementary (they are actually lower
elementary). We also show that the lower elementary complex numbers
form an algebraically closed field closed under exponentiation and some
other special functions.

1 Introduction
We here develop a notion of computable functions on the reals along the lines of
the bit-model as described in [2]. In contrast to the algebraic approach towards
computation over the reals developed in [1], our approach goes back to Grze-
gorczyk and the hierarchy of elementary functions and real numbers developed
by him and Mazur (see [4] footnote p. 201). We thank Dimiter Skordev for a
careful reading of an earlier version of this note. We also thank the referee for
pointing out several flaws in the first version.

2 Good classes of functions
A class F of functions Nn → N is called good if it contains the constant functions,
the projection functions, the successor function, the modified difference function
x−̇y = max{0, x− y}, and is closed under composition and bounded summation

f(x̄, y) =

y∑
i=0

g(x̄, i).

The class of lower elementary functions is the smallest good class. The smallest
good class which is also closed under bounded product

f(x̄, y) =

y∏
i=0

g(x̄, i),

∗v5-2-ge9a838d, Thu Nov 11 13:41:27 2010 +0100

1



or – equivalently – the smallest good class which contains n 7→ 2n, is the class
of elementary functions The elementary functions are the third class ε3 of the
Grzegorczyk hierarchy. The lower elementary functions belong to ε2. It is not
known whether all functions in ε2 are lower elementary.

A function f : Nn → Nm is an F–function if its components fi : Nn →
N, i = 1, . . . ,m, are in F . A relation R ⊂ Nn is called an F–relation if its
characteristic function belongs to F . Note that a good class is closed under the
bounded µ–operator: if R belongs to F , then so does the function

f(x̄, y) = min{i | R(x̄, i) ∨ i = y}.

As a special case we see that bx
y c is lower elementary. The F–relations are

closed under Boolean combinations and bounded quantification:

S(x, y) ⇔ ∃ i ≤ y R(x, i).

It follows for example that for any f in F the maximum function

max
j≤y

f(x̄, j) = min{ i | ∀j ≤ y f(x̄, j) ≤ i }

is in F since it is bounded by
∑y

i=0 f(x̄, i).

We call a set X an F–retract (of Nn) if there are functions ι : X → Nn and
π : Nn → X given with π ◦ ι = id and ι ◦ π ∈ F . Note that the product X ×X ′

of two F–retracts X and X ′ is again an F–retract (of Nn+n′
) in a natural way.

We define a function f : X → X ′ to be in F if ι′ ◦ f ◦ π : Nn → Nn′
is in F .

By this definition the two maps ι : X → Nn and π : Nn → X belong to F . For
an F–retract X, a subset of X is in F if its characteristic function is. It now
makes sense to say that a set Y (together with ι : Y → X and π : X → Y ) is a
retract of the retract X. Clearly Y is again a retract in a natural way.

Easily, N>0 is a lower elementary retract of N and Z is a lower elementary
retract of N2 via ι(z) = (max(z, 0),−min(0, z)) and π(n,m) = n−m. We turn
Q into a lower elementary retract of Z× N by setting ι(r) = (z, n), where z

n is
the unique representation of r with n > 0 and (z, n) = 1. Define π(z, n) as z

n if
n > 0 and as 0 otherwise.

For the remainder of this note we will consider Z and Q as fixed lower ele-
mentary retracts of N, using the maps defined in the last paragraph.

The following lemma is clear.

Lemma 2.1. Let X, X ′ and X ′′ be F–retracts, and f : X → X ′ and f ′ : X ′ →
X ′′ in F . Then f ′ ◦ f also belongs to F .

The height h(a) of a rational number a = z
n , for relatively prime z and n

(n > 0), is the maximum of |z| and n. The height of a tuple of rational numbers
is the maximum height of its elements.
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Lemma 2.2. If f : QN → Q is in F , there is an F–function βf : N → N such
that

h(a) ≤ e ⇒ |f(a)| ≤ βf (e).

Proof. Write f( z1
n1

, . . . , zN
nN

) = g(z1, . . . , nN ) for an F–function g : (Z× N)N →
Q. The function dxe : Q → N is lower elementary. So we can define βf (e) to be
the maximum of all d|g(x1, . . . , x2N )|e, where |xi| ≤ e. βf is easily seen to be in
F .

Lemma 2.3. Let g : X ×N → Q be in F for some F-retract X. Then there is
an F–function f : X × N× N>0 → Q such that∣∣∣f(x, y, k)− y∑

i=0

g(x, i)
∣∣∣ < 1

k
for all x ∈ X, y ∈ N and k ∈ N>0.

Proof. We note first that for every F–function t : X × N → Z the function∑y
i=0 t(x, i) belongs to F . It is also easy to see that there is a lower elementary

function h : Q× N → Z such that∣∣∣h(r, k)
k

− r
∣∣∣ < 1

k
.

Now define f by

f(x, y, k) =

∑y
i=0 h(g(x, i), (y + 1)k)

(y + 1)k

Definition 2.4. A real number x is an F–real if for some F–function a : N → Q

|x− a(k)| < 1

k

Lemma 2.5. x is an F–real if and only if there is an F–function n : N → Z
with n(k)−1

k < x < n(k)+1
k .

Remark 2.6. Let x =
∑∞

i=0 aib
−i for integers b ≥ 2 and ai ∈ {0, 1, . . . , b− 2}.

Then x is an F-real if and only if

ai = f(bi)

for some F–function f .

In [8] Skordev has shown among other things that π is lower elementary and
that e is in ε2. Weiermann [11] proved that e is lower elementary. He used the
representation e =

∑
1
n! and a theorem of d’Aquino [3], which states that the

graph of the factorial is ∆0–definable and therefore lower elementary.1
We will show in Section 6 that volumes of bounded 0–definable semialgebraic

sets are lower elementary, and so is π as the volume of the unit circle. In Section
7 we show that the exponential function maps lower elementary reals into lower
elementary reals.

1D. Skordev and also the referee have informed us that lowness of the graph of the factorial
follows from the fact that the class of functions with lower elementary graph is closed under
bounded multiplication, which is not hard to prove.
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3 Functions on RN

Let O be an open subset of RN where we allow N = 0. For e ∈ N>0 put

O � e =
{
x ∈ O

∣∣ |x| ≤ e
}

and
Oe =

{
x ∈ O � e

∣∣∣ dist(x,RN \O) ≥ 1

e

}
.

(We use the maximum norm on RN .) Notice:

1. Oe is compact.

2. U ⊂ O ⇒ Ue ⊂ Oe.

3. e < e′ ⇒ Oe ⊂ Oe′ .

4. O =
⋃

e∈N Oe

5. Oe ⊂ (O2e)
◦
2e

Definition 3.1. Let F be a good class. A function F : O → R is in F if there
are F–functions d : N → N and f : QN × N → Q such that for all e ∈ N>0 and
all a ∈ QN and x ∈ Oe

|x− a| < 1

d(e)
→ |F (x)− f(a, e)| < 1

e
. (1)

If (1) holds for all x ∈ O � e, we call F uniformly F .2

We will always assume that d : N → N is strictly increasing.

Remark 3.2. Clearly, a function is uniformly F on O if it can be extended to
an F–function on some ε-neighborhood of O.

This definition easily extends to f : O → RM (again under the maximum
norm). Then f is in F if and only if all fi, i = 1, . . . ,M , are in F .

Lemma 3.3. F–functions map F–reals to F–reals. A constant function on RN

is uniformly in F if and only if its value is an F–real.

Definition 3.4. We call a function F : O → RM (uniformly) F-bounded, if
there is an F–function βF : N → Q in F such that |F (x)| ≤ βF (e) for all x ∈ Oe

(x ∈ O � e, respectively).

Note that exp : R → R is not lower elementary bounded, but elementary
bounded.

2As pointed out by the referee even in the case when F is the class of lower elementary
functions, the F–functions on R are not necessarily computable in the sense of [12].
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Lemma 3.5. If F : O → RM is (uniformly) in F , then F is (uniformly)
F-bounded.

Proof. Assume the F–functions d and f satisfy (1). Fix a number e and consider
an x ∈ Oe. Choose z ∈ ZN such that the distance between x and a = 1

d(e)z is
less than 1

d(e) . Since |a| < e+ 1, the height of a is smaller than (e+ 1)d(e). By
Lemma 2.2 we have |f(a, e)| ≤ βf ((e+ 1)d(e)), and therefore

|F (x)| ≤ βf ((e+ 1)d(e)) + 1 = βF (e).

Lemma 3.6. F–functions O → R are continuous.

Proof. We show that F is uniformly continuous on every Oe. Assume that d
and f satisfy (1). It suffices to show that for all x, x′ ∈ Oe

|x− x′| < 2

d(e)
→ |F (x)− F (x′)| < 2

e
.

Assume |x− x′| < 2
d(e) . Choose a ∈ QN such that |x− a| < 1

d(e) and |x′ − a| <
1

d(e) . Then both F (x) and F (x′) differ from f(a, e) by less than 1
e . Whence

|F (x)− F (x′)| < 2
e .

Lemma 3.7. If F : O → RM is in F , U ⊂ RM open and G : U → R uniformly
in F , then G ◦ F : F−1U ∩ O → R is in F . If F is uniformly in F , then so is
G ◦ F .

Proof. Assume that F satisfies (1) with the F–functions d and f and assume
that G satisfies (1) with d′ and g.

Let β = βF be as in 3.5 and set V = F−1(U) ∩ O. Clearly we may assume
β(e) ≥ e for all e ∈ N. So if x ∈ Ve ⊆ Oe, then F (x) ∈ U � β(e). Thus for all
e ∈ N, a ∈ QN and x ∈ Ve we have

|x− a| < 1

d(d′(β(e)))
⇒ |F (x)− f(a, d′(β(e)))| < 1

d′(β(e))

⇒
∣∣∣G ◦ F (x)− g

(
f
(
a, d′(β(e))

)
, β(e)

)∣∣∣ < 1

β(e)
≤ 1

e

This shows also the second part of the theorem, only replace Ve and Oe by V � e
and O � e.

Definition 3.8. A function F : O → U is called F-compact if there is an
F–function β : N → N such that F (Oe) ⊆ Uβ(e) for all e ∈ N>0.

Note that F (x) = 1
x : (0,∞) → (0,∞) and ln(x) : (0,∞) → (−∞,∞) are

lower elementary compact.
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Corollary 3.9. Let O, U and V be open sets in Euclidean space. If F : O → U
is in F and F–compact, and if G : U → V is in F , then G ◦ F is in F . If G is
F–compact, then so is G ◦ F : O → V .

Proof. By the proof of Lemma 3.7.

If F is defined on the union of two open sets U and V , and if F is in F
restricted to U and restricted to V , it is not clear that F is in F , without
additional assumptions.

Remark 3.10. Let F be defined on the union of U and V and assume that
F � U and F � V are in F . Assume also

1. that for some F–function u : N → N (U ∪ V )e ⊂ Uu(e) ∪ Vu(e)

2. that U and V are F–approximable in the sense of Definition 7.1 below,

then F is in F .

The two conditions are satisfied if U and V are open intervals with F–
computable endpoints.

4 Semialgebraic functions
In this article semialgebraic functions (relations) are functions (relations) defin-
able without parameters in R. The trace of a relation R ⊆ RN on Q is R ∩QN .

The following observation is due to Yoshinaga [13].

Lemma 4.1. The trace of semialgebraic relations on Q is lower elementary.

Proof. By quantifier elimination.

Note that any semialgebraic function g : R → R is polynomially bounded,
i.e. there is some n ∈ N with |g(x)| ≤ |x|n for sufficiently large x.

Theorem 4.2. Continuous semialgebraic functions F : O → R are lower ele-
mentary for every open semialgebraic set O.

Proof. Fix some large e ∈ R>0. Note that the Oe – for real positive e – are
uniformly definable. Since F is uniformly continuous on O2e, there is some
positive real d such that for all x, x′ ∈ O2e

|x− x′| < 1

d
⇒ |F (x)− F (x′)| < 1

2e
.

Since the infimum of all such d is a semialgebraic function of e, there is some
n ∈ N such that for all large e ∈ N and all x, x′ ∈ O2e we have

|x− x′| < 1

en
⇒ |F (x)− F (x′)| < 1

2e
.
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By a similar argument we obtain a polynomial bound em for |F | on O2e.
Now define f : QN ×N → Q in the following way: If a does not belong to

O2e, set f(a, e) = 0. Otherwise let f(a, e) be the unique

b ∈ {−em,−em +
1

2e
, . . . , em − 1

2e
, em}

such that F (a) ∈ [b, b + 1
2e ). Then f is lower elementary by Lemma 4.1. Now

assume e ∈ N>0, a ∈ QN and x ∈ Oe with |x−a| < 1
en . We may assume 2e ≤ en.

Then a ∈ O2e and therefore

|F (x)− f(a, e)| ≤ |F (x)− F (a)|+ |F (a)− f(a, e)| < 1

2e
+

1

2e
=

1

e
.

By Remark 3.2 this yields:

Corollary 4.3. Let F : O → R be semialgebraic. If there is some open semial-
gebraic set U containing an ε-neighborhood of O and such that F can be extended
continuously and semialgebraically to U , then F : O → R is uniformly lower
elementary.

Remark 4.4. It is easy to see that, if F : O → V is continuous and F,O, V
are semialgebraic, then F is lower elementary compact.

Corollary 4.5. The set of F-reals RF forms a real closed field.

Proof. By Theorem 4.2, RF is a field. To see that RF is real closed consider
for odd n ∈ N the semialgebraic function f : Rn → R where f(a0, . . . an−1)

is the minimal zero of the polynomial
∑n−1

i=0 aiX
i + Xn. By semialgebraic

cell decomposition (see [10], Ch. 3), Rn can be decomposed into finitely many
semialgebraic cells on which f is continuous. Each cell is homeomorphic to an
open subset of Rk for some k ≥ 0 via the appropriate (semialgebraic) projection
map. Thus, composing the inverse of such a projection π with f we obtain
a semialgebraic map on an open subset of Rk. Applying Theorem 4.2 and
Lemma 3.3 first to π−1 and then to the composition, we see that a polynomial
with coefficients in RF has a zero in RF .

Corollary 4.5 was first proved by Skordev (see [7]). For countable good
classes F , like the class of lower elementary functions, clearly RF is a countable
subfield of R.

5 Integration
Theorem 5.1. Let O ⊂ RN be open and G,H : O → R in F such that G < H
on O. Put

U =
{
(x, y) ∈ RN+1 | x ∈ O, G(x) < y < H(x)

}
.
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Assume further that F : U → R is in F and that |F (x, y)| is bounded by an
F–function K(x). Then

I(x) =

∫ H(x)

G(x)

F (x, y) dy (2)

is an F–function O → R.

Proof. We fix witnesses for F,G,H being in F : let d : N → N, f : QN+1 ×N →
Q, g, h : QN × N → Q be F–functions such that for x ∈ Oe, a ∈ QN , b ∈ Q

|x− a| < 1

d(e)
⇒ |G(x)− g(a, e)| < 1

e
and (3)

|H(x)− h(a, e)| < 1

e
(4)

and, if |y| ≤ e and y ∈ [G(x) + 1
e ,H(x)− 1

e ],

|x− a| < 1

d(e)
∧ |y − b| < 1

d(e)
⇒ |F (x, y)− f(a, b, e)| < 1

e
. (5)

By Lemma 3.5 we get an F–function κ : N → N with |F (x, y)| ≤ κ(e) for all
(x, y) ∈ U and H(x)−G(x) ≤ κ(e) for all x ∈ Oe. We assume that κ ≥ 2.

Let d′(e) = d(e′′), where e′ = 12eκ(e) and e′′ = 2d(e′). Define the function
j : QN ×N → Q as follows: if h(a, e′′)−g(a, e′′) < 4

e′ , set j(a, e) = 0. Otherwise
set

j(a, e) =
S−1∑
s=0

f(a, g(a, e′′) +
1

e′
+ sδ, e′) · δ,

where S = κ(e)e′′ and δ = 1
S (h(a, e

′′)− g(a, e′′)− 2
e′ ). By Lemma 2.3 there is a

function i′(a, S, 2e) = i(a, e) in F with |j(a, e)− i(a, e)| < 1
2e .

In order to show that for all a ∈ QN and x ∈ Oe

|x− a| < 1

d′(e)
⇒

∣∣I(x)− i(a, e)
∣∣ < 1

e
(6)

it suffices to show

|x− a| < 1

d′(e)
⇒

∣∣I(x)− j(a, e)
∣∣ < 1

2e
.

Since3 e ≤ e′ ≤ e′′, the hypothesis implies x ∈ Oe′ ⊆ Oe′′ . We also have
|x− a| < 1

d(e′′) and therefore

|G(x)− g(a, e′′)| < 1

e′′
(7)

|H(x)− h(a, e′′)| < 1

e′′
. (8)

3Remember that d is strictly increasing by assumption.
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Case 1: h(a, e′′) − g(a, e′′) < 4
e′ . Using (7) and (8) we have |H(x) − G(x)| <

2
e′′ +

4
e′ ≤

6
e′ . Therefore

∣∣I(x)∣∣ < 6
e′κ(e) =

1
2e , which was to be shown.

Case 2: h(a, e′′) − g(a, e′′) ≥ 4
e′ . This implies H(x) − G(x) ≥ 4

e′ −
2
e′′ ≥ 2

e′ .
Thus ∆ = 1

S (H(x)−G(x)− 2
e′ ) is non-negative. Note that by (7) and (8)

|∆− δ| < 2

Se′′
. (9)

We also have
∆ <

κ(e)

S
=

1

e′′
.

It is easy to see that for each s ≤ S, we have

∣∣(G(x) +
1

e′
+ s∆

)
−

(
g(a, e′′) +

1

e′
+ sδ

)∣∣ ≤
max

(
|G(x)− g(a, e′′)|, |H(x)− h(a, e′′)|

)
<

1

e′′
. (10)

This implies for every y ∈ [G(x) + 1
e′ + s∆, G(x) + 1

e′ + (s+ 1)∆] that∣∣y − (
g(a, e′′) +

1

e′
+ sδ

)∣∣ < 1

e′′
+∆ ≤ 2

e′′
=

1

d(e′)
.

Since |x− a| < 1
d(e′) , we have therefore

∣∣F (x, y)− f
(
a, g(a, e′′) +

1

e′
+ sδ, e′

)∣∣ < 1

e′
, (11)

which implies∣∣∣ ∫ H(x)− 1
e′

G(x)+ 1
e′

F (x, y) dy −
S−1∑
s=0

f
(
a, g(a, e′′) +

1

e′
+ sδ, e′

)
·∆

∣∣∣ < κ(e)

e′
. (12)

By (11) we have that all f
(
a, g(a, e′′) + 1

e′ + sδ, e′
)

are bounded by κ(e) + 1. It
follows that

∣∣∣ S−1∑
s=0

f
(
a, g(a, e′′) +

1

e′
+ sδ, e′

)
·∆ − j(a, e)

∣∣∣ ≤
S(κ(e) + 1)|∆− δ| ≤ 2(κ(e) + 1)

e′′
. (13)

Finally the absolute values of
∫ G(x)+ 1

e′
G(x) F (x, y) dy and

∫H(x)

H(x)− 1
e′
F (x, y) dy are

bounded by κ(e)
e′ . By (12) and (13), this yields∣∣I(x)− j(a, e)

∣∣ < 2(κ(e) + 1)

e′′
+

κ(e)

e′
+

2κ(e)

e′
≤ 6κ(e)

e′
=

1

2e
.

This proves (6).
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An examination of the proof yields:

Corollary 5.2. If F,G,H are as above and uniformly in F , then the function

x 7→
∫ H(x)

G(x)

F (x, y) dy

is uniformly in F .

6 Periods
Kontsevich and Zagier [5] define a period as a complex number whose real and
imaginary parts are values of absolutely convergent integrals of rational functions
with rational coefficients over domains in Rn given by polynomial inequalities
with rational coefficients. The periods form a ring containing all algebraic reals.
It is an open problem whether e is a period.

Yoshinaga [13] proved that periods are elementary. An analysis of his proof
shows that he actually showed that periods are lower elementary. We here give
a variant of his proof where part of his argument is replaced by an application
of Theorem 5.1.

Definition 6.1. A 1–dimensional bounded open cell is a bounded open interval
with algebraic endpoints. An n+1–dimensional bounded open cell is of the form{

(x, y) ∈ RN+1 | x ∈ O, G(x) < y < H(x)
}

for some n–dimensional bounded open cell O and bounded continuous semialge-
braic functions G < H from O to R.

Thus our cells are semialgebraic.

Lemma 6.2. Let C be an N–dimensional bounded open cell and N = A + B.
Let O be the projection on the first A–coordinates and for x ∈ O let Cx be the
fiber over x. Then the map x 7→ vol(Cx) is a bounded lower elementary function.

Proof. By induction on B. Let U be the projection on the first A+1 coordinates.
Then U is of the form{

(x, y) ∈ RA+1 | x ∈ O, G(x) < y < H(x)
}

for some bounded and continuous semialgebraic functions G < H. By induction
hypothesis, u 7→ vol(Cu) is a bounded lower elementary function U → R. By
Fubini

vol(Cx) =

∫ H(x)

G(x)

vol(Cx,y) dy.

This is bounded and lower elementary by Theorem 5.1.

Corollary 6.3. The volumes of bounded semialgebraic sets are lower elemen-
tary.
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Proof. Since every semialgebraic set is the disjoint union of semialgebraic cells,
it is enough to know the claim for bounded semialgebraic cells, which is the
N = 0 case of Lemma 3.3.

Corollary 6.4. Periods are lower elementary.

Proof. By Lemma 24 of [13], periods are differences of sums of volumes of
bounded open semialgebraic cells.

7 The Inverse Function Theorem
We call a sequence A1,A2, . . . of subsets of QN an F–sequence, if {(e, a) | a ∈
Ae} is an F–subset of N>0 ×QN .

Definition 7.1. An open set O ⊂ RN is F–approximable if there is an F–
sequence A1,A2, . . . of subsets of QN and an F–function α : N → N such that
Oe ∩QN ⊂ Ae ⊂ Oα(e) for all e ∈ N>0.

It follows from Lemma 4.1 that semialgebraic sets O are lower elementary
approximable. We can simply set Ae = Oe ∩QN .

The following observations will not be used in the sequel. For the last part,
we need Lemma 7.4.

Remark 7.2. 1. The intervals (x,∞), (−∞, y) and (x, y) are F–approximable
if and only if x and y are F–reals.

2. If O is F–approximable and F,G : O → R are in F , then {(x, y) | x ∈
O,F (x) < y < G(x)} is F–approximable.

3. If F : O → V is a homeomorphism and F and F−1 are uniformly in F ,
then O is F–approximable if and only if V is.

Theorem 7.3. Let F : O → V be a bijection in F where O is F–approximable
and V open in RN . Assume that the inverse G : V → O satisfies:

(i) There is an F–function d′ : N → N such that |G(y) − G(y′)| < 1
e for all

y, y′ ∈ Ve with |y − y′| < 1
d′(e) .

(ii) G is F–compact.

Then G is also in F .

By the proof of Lemma 3.6 and Remark 7.5 below the conditions (i) and (ii)
are necessary for the conclusion to hold.

Proof. As G is F–compact, let γ : N → N be an F–function such that G(Ve) ⊆
Oγ(e).

Since F is in F , we find F–functions d(e) and f(a, e) such that for all a ∈ QN

and x ∈ Oe

|x− a| < 1

d(e)
→ |F (x)− f(a, e)| < 1

e
(14)

11



We also fix a function α and a sequence Ai, i ∈ N>0 as in Definition 7.1.
We now construct two F–functions d′′ : N → N and g : QN ×N → QN such

that
|y − b| < 1

d′′(e)
→ |G(y)− g(b, e)| < 1

e
(15)

for all e ∈ N>0, b ∈ QN and y ∈ Ve.
Fix e ∈ N and b ∈ QN . Set

d′′ = d′′(e) = max
(
4d′(2e), 8e, α(2γ(e)), 2γ(e)

)
.

Also put C = max
(
2γ(e), d(d′′)

)
and consider the set

A = A2γ(e) ∩
( 1

C
Z
)N

.

Since the elements of A are bounded by α(2γ(e)), A is a finite set. If there is
an a ∈ A such that ∣∣b− f(a, d′′)

∣∣ < 2

d′′
, (16)

we choose such an a by an F–function (!) a = g(b, e). Otherwise put g(b, e) = 0.

Let us check that d′′ and g satisfy (15). Start with e and b as above and
consider an y ∈ Ve with |y − b| < 1

d′′(e) .
We first show that A contains an element a′ with |b − f(a′, d′′)| < 2

d′′ . For
this set x = G(y) ∈ Oγ(e). Choose an a′ ∈

(
1
C Z

)N such that |x−a′| < 1
C . Since

C ≥ 2γ(e), we have a′ ∈ O2γ(e) and therefore a′ ∈ A. Since d′′ ≥ 2γ(e) and
d(d′′) ≤ C we have |y−f(a′, d′′)| < 1

d′′ by (14). This implies |b−f(a′, d′′)| < 2
d′′ .

Now set a = g(b, e). By the previous paragraph, we know that a is in A and
satisfies (16). Since a ∈ Oα(2γ(e)) and d′′ ≥ α(2γ(e)), we have

∣∣F (a)−f(a, d′′)
∣∣ <

1
d′′ . This implies |y − F (a)| ≤ |y − b| + |b − f(a, d′′)| + |f(a, d′′) − F (a)| < 4

d′′ .
Since d′′

4 ≥ 2e, this implies F (a) ∈ V2e. Since d′(2e) ≤ d′′

4 , we can use (i) to
obtain |x− a| < 1

e .

Lemma 7.4. Let G : V → O be open and continuous. Suppose

1. G is F–bounded.

2. There is an F–function d′ : N → N such that

|G(x)−G(x′)| < 1

d′(e)
→ |x− x′| < 1

e

whenever G(x), G(x′) ∈ O � e

Then G is F–compact.

Remark 7.5. By Lemma 3.5 and the proof of Lemma 3.6, respectively, the con-
ditions of Lemma 7.4 are satisfied if G is a bijection in F and G−1 is uniformly
in F .

12



Proof of 7.4. Choose an F–function β such that |G(x)| ≤ β(e) for all x ∈ Ve, so
G(Ve) ⊆ O � β(e). We may assume β(e) ≥ 2e. Let γ(e) = max(2β(e), d′(2β(e))).
We will show that G(Ve) ⊂ Oγ(e) for all e ∈ N>0.

Let x ∈ Ve and y = G(x) ∈ O � β(e) ⊆ O � γ(e). So we have to show
that dist(y,RN \O) ≥ 1

γ(e) . Let B be the open ball4 around x with radius 1
e+1 .

Then the closure B = B ∪ δB is still a subset of V . Since G is continuous and
open, G(B) is compact and G(B) is open in O and therefore in RN . Let y′′

be any element in RN \ O. Look at the line segment L between y′′ and y. L
contains an element of G(δB) since otherwise the traces of G(B) and RN \G(B)
on L were an open partition of L. So let x′ ∈ δB and y′ = G(x′) ∈ L. Then
|x− x′| = 1

e+1 ≥ 1
2e .

By assumption

|y − y′| < 1

d′(2β(e))
→ |x− x′| < 1

2β(e)

if y, y′ ∈ O � 2β(e). So there are two cases. Either |y − y′| ≥ 1
d′(2β(e)) ≥ 1

γ(e) or
|y′| > 2β(e). But since |y| ≤ β(e), in this case we have |y − y′| > 1 and we are
done either way.

Corollary 7.6. Let O be F–approximable and V open and convex in RN and
F : O → V a bijection which is uniformly in F . Assume that the inverse
G : V → O is differentiable and that |D(G)| can be bounded by an F–function
G′ : V → R. Then G belongs also to F .

Here the norm of a matrix A = (ai,j) is maxi
∑

j |ai,j |.

Proof. It suffices to show that G satisfies (i) and (ii) of Theorem 7.3.
Proof of (i): By Lemma 3.5, there is an F-function γ : N → Q such that
|G′(y)| ≤ γ(e) for all y ∈ Ve. Assume that y, y′ ∈ Ve and |y − y′| < 1

2e .
Then the line segment between y and y′ is contained in V2e and it follows that
|G(y)−G(y′)| ≤ |y − y′|γ(2e) So we can set d′(e) = max

(
2e, e

γ(2e)

)
.

Proof of (ii): We have to verify the two conditions of Lemma 7.4. Condition 2
follows from the assumption that F is uniformly in F . It remains to show that
G is F-bounded.

Fix some y0 ∈ V and some e0 with y0 ∈ Ve0 . If e ≥ e0 and y ∈ Ve, then the
line segment between y0 and y lies in Ve. So

|G(y)| ≤ |G(y)−G(y0)|+ |G(y0)| ≤ |y − y0|γ(e) + |G(y0)|.

We set β(e) = 2e′γ(e′) + d|G(y0)|e, where e′ = max(e, e0), and have |G(y)| ≤
β(e).

The next proposition shows that for proper intervals we can weaken the
assumptions:

4Actually this is a cube, since we use the maximum norm.
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Proposition 7.7. Let F : O → V ⊆ R be a homeomorphism with inverse
G where O = (c0, c1) is a bounded open interval whose endpoints are F–reals.
Suppose that F belongs to F and that there is an F–function d′ : N → N such
that |G(y)−G(y′)| < 1

e for all y, y′ ∈ Ve with |y − y′| < 1
d′(e) . Then G is in F .

Proof. Without loss of generality let us assume that F is increasing. For sim-
plicity we also assume c0, c1 ∈ Q. Since F is in F , we find F–functions d(e) and
f(a, e) such that for all a ∈ Q and x ∈ Oe we have

|x− a| < 1

d(e)
→ |F (x)− f(a, e)| < 1

e

We may assume d(e) ≥ 4e and d′(e) ≥ e for all e ∈ N. We will find an F–
function g(b, e) such that for y ∈ Ve we have

|y − b| < 1

d′(2d(e))
→ |G(y)− g(b, e)| < 1

e

Let e′ = 2d′(2d(e)). If 1
2d(e′)Z ∩Oe′ = ∅, put g(b, e) = 1

2 (c0 + c1). If there is
some a ∈ 1

2d(e′)Z ∩ Oe′ with |b − f(a, e′)| < 1
e′ , put g(b, e) = a with a minimal

such. Otherwise, put g(b, e) = c1 if b − f(a, e′) ≥ 1
e′ for all a ∈ 1

2d(e′)Z ∩ Oe′

and c0 if f(a, e′) − b ≥ 1
e′ for all a ∈ 1

2d(e′)Z ∩ Oe′ . Note that one of these
cases occurs since for a, a′ ∈ 1

2d(e′)Z ∩ Oe′ with |a − a′| = 1
2d(e′) we have

|f(a, e′)− f(a′, e′)| < 2
e′ .

Now let y ∈ Ve and |y− b| < 1
d′(2d(e)) . So b, y ∈ V2d(e) and |G(y)−G(b)| < 1

2d(e) .
Case 1: Suppose that x = G(y) ∈ Oe. Note that Oe 6= ∅ implies that 1

2d(e′)Z ∩
Oe′ 6= ∅. Since |G(y)−G(b)| < 1

2d(e) , we have G(b) ∈ Oe′ . Hence there is some
smallest a ∈ 1

2d(e′)Z ∩Oe′ with |b− f(a, e′)| < 1
e′ . Then g(b, e) = a and

|G(y)− g(b, e)| ≤ |G(y)−G(b)|+ |G(b)− a|.

Now

|F (a)− b| ≤ |F (a)− f(a, e′)|+ |f(a, e′)− b| ≤ 2
1

e′
≤ 1

d′(2d(e))
.

Since y ∈ Ve and |y − F (a)| ≤ |y − b|+ |F (a)− b| < 2
d′(2d(e)) we have F (a), b ∈

V2d(e) and hence |G(b)− a| ≤ 1
2d(e) . Combining all this we see that

|G(y)− g(b, e)| < 1

d(e)
<

1

e
.

Case 2: Suppose that x = G(y) /∈ Oe. Then if g(b, e) = a ∈ Oe′ the same
argument as above works. Otherwise by construction of g, g(b, e) equals either
c0 or c1 and we again have |G(y)− g(b, e)| < 1

e .
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8 Series of functions
Definition 8.1. For an open set O ⊆ RN a sequence F1, F2, . . . of functions
O → RM is in F if there are F–functions d : N2 → N and f : QN × N2 → QM

such that for all i, e ∈ N>0 and all a ∈ QN and x ∈ Oe

|x− a| < 1

d(i, e)
→ |Fi(x)− f(a, i, e)| < 1

e
. (17)

This definition is the n = 1 case of the obvious notion of an F–function
F : Nn × O → RM . Note also that for N = 0 this defines F–sequences of
elements of RM .

Lemma 8.2. If F : O × R>0 → RM is in F , then so is the sequence F (−, i) :
O → RM , (i = 1, 2, . . .).

Proof. There are F–functions d′ : N → N and f : QN+1 × N → QM such that
for all a ∈ QN , x ∈ Oe and b ∈ [1e , e] ∩Q

|x− a| < 1

d′(e)
→ |F (x, b)− f(a, b, e)| < 1

e
.

So we can set d(i, e) = d′(max(i, e)).

Definition 8.3. A sequence F1, F2, . . . of functions O → RM F–converges
against F , if there is an F–function m : N → N such that |F (x) − Fi(x)| < 1

e
for all x ∈ Oe and i ≥ m(e).

Lemma 8.4. The F–limit of an F–sequence of functions is an F–function.

Proof. Let d and f be as in Definition 8.1 and m as in 8.3. Set d′(e) =
d(m(2e), 2e) and f ′(a, e) = f(a,m(2e), 2e). Consider a ∈ QN , x ∈ Oe and as-
sume |x− a| < 1

d′(e) . Then |F (x)−Fm(2e)(x)| < 1
2e and |Fm(2e)(x)− f ′(a, e)| <

1
2e . It follows that |F (x)− f ′(a, e)| < 1

e .

Proposition 8.5. Let F1, F2, . . . be an F–sequence of functions O → RM such
that the partial sums of the series

∑∞
i=1 Fi are F–convergent. Then

∑∞
i=1 Fi :

O → RM is in F .

Proof. We have to show that the series of partial sums is an F–series of func-
tions. This can easily be done using Lemma 2.3.

9 Examples
1. Inverse trigonometric functions

The function x
1+x2t2 is continuous and semialgebraic. So by Theorem 5.1

arctan(x) =

∫ 1

0

x

1 + x2t2
dt
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is lower elementary. The same argument shows that

arcsin(x) =

∫ 1

0

x√
1− x2t2

dt

is lower elementary5, as a function defined on (−1, 1).

2. Logarithm

As a semialgebraic function 1
x : R>0 → R is lower elementary. So by Theo-

rem 5.1 ln(x) =
∫ x

1
1
y dy is lower elementary, at least on (0, 1) and (1,∞). But

writing

ln(x) =

∫ 1

0

x− 1

1 + t(x− 1)
dt,

we see that ln(x) is lower elementary on (0,∞).
The same formula defines also the main branch of the complex logarithm

ln(z) : C \ R≤0 → C. Since the real and imaginary part of the integrand
z−1

1+t(z−1) are semialgebraic functions of Re(z), Im(z) and t, we conclude that
ln(z) is lower elementary.6 It is also easy to see that ln(z) is lower elementary
compact as a function from C \ R≤0 to {z | Im(z) ∈ (−π, π) }.

3. Exponentiation

As exp(x) is bounded on every interval (−∞, r) we may apply Proposition 7.7
to ln : (0, 1) → (−∞, 0) to conclude that exp(x) is lower elementary on (−∞, 0)
and – by translation – on every interval (−∞, r). exp(x) cannot be lower ele-
mentary on the whole real line since it grows too fast. Nevertheless the following
is true.

Lemma 9.1. G(x, y) = exp(x) is lower elementary on V = {(x, y) : exp(x) <
y}.

Proof. Clearly, G is lower elementary on V ∩ (R<1 × R) and differentiable on
V . So let us consider V ′ = V ∩ (R>0 × R), which is a convex open subset of
R2. Let O = {(z, y) : 1 < z < y}, which is lower elementary approximable, let
F : O −→ V ′ map (z, y) to (ln z, y) and let H be the inverse of F . The norm
of the differential of H is bounded by the lower elementary function (x, y) 7→ y.
Now F is uniformly low, which by Corollary 7.6 implies that H and therefore
G � V ′ is lower elementary. Now G is lower elementary on V by Remark
3.10.

The complex logarithm defines a homeomorphism

ln : C \ R≤0 → {z | Im(z) ∈ (−π, π) }
5 We do not know whether arcsin is uniformly lower elementary.
6We identify C with R2.
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and for all r < s ∈ R a uniformly lower elementary homeomorphism between
{z ∈ C \ R≤0 | exp(r) < |z| < exp(s)} and {z | Im(z) ∈ (−π, π), r < Re(z) < s}.
We can apply Corollary 7.6 to see that exp(z) is lower elementary on {z | Im(z) ∈
(−π, π), r < Re(z) < s}. Using the periodicity of exp(z) it is now easy to see
that exp(z) is lower elementary on each strip {z | r < Re(z) < s}. This implies
that sin(x) : R → R is lower elementary. Now also cos(x) is lower elementary
and since exp(x + y i) = exp(x)(cos(y) + sin(y) i) we see that exp(z) is lower
elementary on every half-space {z | Re(z) < s}.

Remark 9.2. It is easy to see that exp(z) is elementary on C.

4. xy

Consider the function xy, defined on X = (C \ R≤0)× C by

xy = exp(ln(x) · y).

Since ln(x) is lower elementary and exp(x) elementary on C, it is clear that xy

is elementary.

Let us determine some subsets of X on which xy is lower elementary. We
use the notation E = {z ∈ C | |z| < 1} for the open unit disc.

Fact 4.1: xy is lower elementary on (E \ R≤0)× R>0.

Proof: ln(x) · y maps this set to {z | Re(z) < 0}, on which exp is uniformly
lower elementary.

Fact 4.2: xy is lower elementary on (0, 1)× {z | Re(z) > 0}.

Proof: ln(x) · y maps this set to {z | Re(z) < 0}.

Fact 4.3: xy is lower elementary on R>0×{z | 0 < Re(z) < r), for all positive r.

Proof: Since xa+b i = xa(sin(ln(x)b) + cos(ln(x)b) i), it suffices to consider xy

on R>0 × (0, r). xy is lower elementary on (0, 2) × (0, r), since ln(x)y maps
(0, 2) × (0, r) to (−∞, ln(2)r). Therefore we are left with U = (1,∞) × (0, r).
Let N be a natural number ≥ r + 1. Then xy is the composition of F (x, y) =
(ln(x)y, xN ) and G(z, w) = exp(z). F maps U into V = {(z, w) | exp(z) < w},
on which G is lower elementary by Lemma 9.1. We will show that F : U → V
is lower elementary compact, so we can apply Corollary 3.9 to conclude that
xy is lower elementary on U . It is clear that F is lower elementary compact
as a function from U to R2. So it suffices to show that for all e ∈ N>0 and
(x, y) ∈ [1e ,∞) × (0, r) we have dist(F (x, y),R2 \ V ) ≥ 1

4e . This amounts to
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exp(ln(x)y + 1
4e ) < xN − 1

4e , which is easy to prove:

exp
(
ln(x)y + 1

4e

)
= xy exp

(
1
4e

)
≤ xy

(
1 + 1

2e

)
< xy

(
1 + 1

e

)
− xy 1

4e

≤ xN − xy 1
4e ≤ xN − 1

4e .

5. Gamma function

We have for Re(x) > 1

Γ(x) =

∫ ∞

0

t−1+x exp(−t) dt

=

∫ 1

0

t−1+x exp(−t) dt+

∫ ∞

1

t−1+x exp(−t) dt

=

∫ 1

0

t−1+x exp(−t) dt+

∫ 1

0

1

t1+x
exp

(−1

t

)
dt.

Let us check that for every bound r > 1 the two integrands are lower elementary
on Xr = {(x, t) | Re(x) ∈ (1, r), t ∈ (0, 1)}: exp(−t) is lower elementary on
(0, 1). And, since 1

t : (0, 1) → (1,∞) is lower elementary compact (cf. Remark
4.4), the function exp(−1

t ) is lower elementary on (0, 1). t−1+x and 1
t1+x =(

1
t

)x+1 are lower elementary by Fact 4.3 above.
If r > 1, the absolute values of the integrands are bounded by 1 and

(r + 1)(r+1), respectively. So by Theorem 5.1, Γ is lower elementary on every
strip {z | 1 < Re(z) < r}.

6. Zeta–function

Since xy is lower elementary on (0, 1)×{z | Re(z) > 0} (Fact 4.2), the function
( 1x )

y is lower elementary on (1,∞) × {z | Re(z) > 0}. This implies that the
sequence 1

ns , (n = 1, 2, . . .) is a lower elementary sequence of functions defined
on {z | Re(z) > 0} by Lemma 8.27. The series

ζ(z) =
∞∑

n=1

1

nz

converges whenever t = Re(z) > 1 and we have the estimate

∣∣∣ζ(z)− N∑
n=1

1

nz

∣∣∣ ≤
∫ ∞

N

1

xt
dx =

1

(t− 1)N t−1
.

So, if Re(z) ≥ 1+ 1
k and N ≥ (ke)k, we have

∣∣∣ζ(z)−∑N
n=1

1
nz

∣∣∣ < 1
e . This shows

that ζ(z) is lower elementary on every {z | Re(z) > s}, (s > 1) by Proposition
8.5.

7Strictly speaking, one applies 8.2 to ( 1
x+1

)y to get the lower elementary series 1
2s

, 1
3s

, . . ..
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10 Holomorphic functions
Lemma 10.1. The sequence of functions zn, n = 0, 1, . . . is a lower elementary
sequence of functions on E

Proof. By Fact 4.1 and Lemma 8.2, the sequence z1, z2,. . . is lower elementary
on E\R≤0. Since (−z)n = (−1)nzn, it follows that z1, z2,. . . is lower elementary
on E \ {0}. It is now easy to see that z1, z2,. . . is actually lower elementary on
E. (Set f(a, i, e) = 0, if |a| < 1

e .)

Lemma 10.2. Let F (z) =
∑∞

i=0 aiz
i be a complex power series with radius of

convergence ρ. Let 0 < b < ρ be an F–real such that (aibi)i∈N is an F–sequence
of complex numbers. Then F restricted to the open disc {z : |z| < b} belongs to
F .

Proof. By assumption and the last lemma the sequence (aib
izi) is F on E. If

we plug in the F–function z 7→ z
b , we see that (aiz

i) is lower elementary on
{z : |z| < b}. We are finished, if we can show that

∑∞
i=0 aiz

i is F–convergent
on {z : |z| < b}.

For this we find a lower elementary function m(e) such that |
∑∞

i=n aiz
i| < 1

e

for all n ≥ m(e) and |z| ≤ b − 1
e . Since 1

ρ = lim supn→∞
n
√

|an|, there is an N

such that n
√

|an| < 1
b for all n > N , or, |anbn|<1 for all n > N .

We show that
∑∞

i=n |ai|xi < 1
e for all n > max(N, b2e3) and x ∈ [0, b− 1

e ]:

∞∑
i=n

|ai|xi =
(x
b

)n ∞∑
i=0

∣∣an+ib
n+i

∣∣(x
b

)i

≤
(x
b

)n ∞∑
i=0

(x
b

)i

≤
(
1− 1

be

)n 1

1− x
b

≤
( 1

1 + 1
be

)n

be ≤ 1

1 + n
be

be

≤ (be)2

n
<

1

e

Remark 10.3. If 0 < b0 < b1 are F–reals and (aib
i
1) is an F–sequence, then

also (aib
i
0) is an F–sequence.

Proof.
(b0
b1

)i

is an F–sequence.

Definition 10.4. Let A be a compact subset of RN . We call a function F :
A → RM to be in F if there are F–functions d : N → N and f : QN ×N → QM

such that for all e ∈ N>0 and all a ∈ QN and x ∈ A

|x− a| < 1

d(e)
→ |F (x)− f(a, e)| < 1

e
.

Let F : A → RM be defined on the compact set A. The following is easy to
see:
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1. If F can be extended to an F–function defined on an open set, then F is
in F .

2. If F is in F , then all restrictions to open subsets of A belong to F .

Lemma 10.5. Let F (z) =
∑∞

i=0 aiz
i be a complex power series with radius of

convergence ρ. Assume that for some F–real b < ρ, F (z) restricted to {z : |z| ≤
b} is in F . Then the sequence (aib

i) belongs to F .

Proof. We have

an =
1

2π i

∫
|z|=b

F (z)

zn+1
dz =

1

2π i

∫
|z|=1

F (bz)

(bz)n+1
d(bz)

=
1

2π i

1

bn

∫
|z|=1

F (bz)

zn+1
dz

The integral can be computed as∫ 2π

0

F (b exp(x i))

exp(x i)n+1
( i exp(x i)) dx

= i

∫ 2π

0

F (b exp(x i)) exp(−nx i) dx

An application of Theorem 5.1 yields that y 7→ i
∫ 2π

0
F (b exp(x i)) exp(−yx i) dx

is a lower elementary function from R to C. The lemma follows from this by an
application of Lemma 8.2.

Lemma 10.6. A sequence (xn) ∈ C is in F if there is an F–function G : N2 →
Q2 with |xn −G(n, e)| < 1/e for all n, e ∈ N>0.

Proof. This is clear from the definitions.

Lemma 10.7 (Speed-Up Lemma). Suppose (an) ∈ C is a bounded sequence
and that 0 < b < 1 is an F–real. Then (anb

n) is an F–sequence if (anb2n) is.

Proof. We may assume that |an| < 1 for all n. Let f : N2 → Q2 be in F such
that |anb2n − f(n, e)| < 1

e .

ye =
ln(e)

ln(b−1)
, (e = 1, 2, . . .)

is an F–sequence of reals. So there is an F–function h : N → Q such that
|ye − h(e)| < 1 for all e ∈ N>0. We fix also a natural number B ≥ b−1.

We want to define an F–function G : N2 → Q2 with∣∣anbn −G(n, e)
∣∣ < 1

e
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for all n, e ∈ N>0. Let n, e be given. We distinguish two cases:

Case 1: h(e) < n− 1. We have then ye < n, which implies

|anbn| < |bn| < 1

e
.

So we set G(n, e) = 0.

Case 2: h(e) ≥ n− 1. Then ye ≥ n− 2, which means

b2−n = exp
(
ln(b−1)(n− 2)

)
≤ e.

We can now apply Lemma 9.1 and compute b2−n as a lower elementary function
of ln(b−1)(n − 2) and e. It follows that we can compute b−n = b2−nb−2 as an
F–function of n and e. So also G(n, e) = f(n,B2e2)b−n is an F–function of n
and e, and we have

∣∣anbn −G(n, e)
∣∣ = ∣∣anb2n − f(n,B2e2)

∣∣ · b−n <
b−n

B2e2
≤ b2−n

e2
≤ 1

e
.

Corollary 10.8. Let F (z) =
∑∞

i=0 aiz
i be a complex power series with radius

of convergence ρ. If F is in F on some closed subdisc of {z : |z| < ρ}, it is in
F on all closed subdiscs.

Proof. Let r be any positive rational number smaller than ρ. Choose a rational
number s between r and ρ. We then have |ansn| < 1 for almost all n. By
assumption there is an N such that F is F on {z : |z| ≤ sbN}, where

bN =
(r
s

)2N

.

This implies by Lemma 10.5 that ((ans
n)bnN ) is in F . If N > 0, the Speed-Up

Lemma shows that ((ansn)bnN−1) is in F . Continuing this way we conclude that
(ans

nbn0 ) = (anr
n) is in F . So F is F on {z : |z| < r} by Lemma 10.2.

Theorem 10.9. Let F be a holomorphic function, defined on an open domain
D ⊂ C. If F is in F on some non–empty open subset of D, it is in F on every
compact subset of D.

Proof. It is easy to see that one can connect any two rational8 points a, b in D
by a chain a = a0, . . . , an = b of rational points such that for every i < n, some
circle Oi = {z : |z − ai| < ri} contains ai+1 and is itself contained in D.

If F is in F on some open neighborhood of a0, Corollary 10.8 (applied to
F (z + a0)) shows that F is in F on any closed subdisc of O0. So F is in F in
some open neighborhood of a1, etc. We conclude that all rational points of D

8i.e. in Q2
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have an open neighborhood on which F is F . So, again by Corollary 10.8, F
is in F on all closed discs with rational center contained in D. Since we can
cover any compact subset of D with a finite number of such discs, the theorem
follows.

We call all a holomorphic function which satisfies the condition of Theo-
rem 10.9 to be locally in F .

Corollary 10.10. Let F be a holomorphic function, defined on an open domain
D ⊂ C. Let a be an F–complex number in D and let b be a positive F–real
smaller than the radius of convergence of F (a + z) =

∑∞
i=0 anz

n. Then F is
locally in F if and only if (anbn) is an F–sequence.

Corollary 10.11. Let F be holomorphic on a punctured disk D• = {z | 0 <
|z| < r}. Then the following holds:

1. If 0 is a pole of F and F is F on some non–empty open subset of D•,
then F is F on every proper punctured subdisc D′

• = {z | 0 < |z| < r′}.

2. If 0 is an essential singularity of F , F is not lower elementary on D•.

Proof. 1: Let 0 be a pole of order k. Then F (z)zk is holomorphic on D =
{z |z| < r}. By the theorem F (z)zk is F on any disc D′ = {z : |z| < r′}, r′ < r.
Since z−k is lower elementary on D′

•, F is F on D′
•.

2: If F would be lower elementary on D•, the absolute value of F on {z | 0 <
|z| < 1

e} would be bounded by a polynomial in e (Lemma 3.5). So 0 would be
a pole of F .

Corollary 10.12. Let S = {−n | n ∈ N} denote the set of poles of the Gamma
function Γ. Γ is lower elementary on every set {z : |z| < r} \ S.

Γ cannot be lower elementary on C \ S since n! grows too fast. We believe
that Γ is elementary on C \ S.

Corollary 10.13. The Zeta function ζ(z) is lower elementary on every punc-
tured disk {z | 0 < |z − 1| < r}.

ζ cannot be lower elementary on C \ {1}, since ∞ is an essential singularity.
But ζ may be elementary on C \ {1}.

Corollary 10.14. The set CF = RF [ i ] of F–complex numbers is algebraically
closed and closed under ln(z), exp(z), Γ(z) and ζ(z).

Note that RF [ i ] is algebraically closed since RF is real closed by Corol-
lary 4.5.

If a0, a1, . . . are Q–linearly independent algebraic numbers, the exponentials
exp(a0), exp(a1). . . . are lower elementary and algebraically independent by the
Lindemann–Weierstraß Theorem. So the field of lower elementary complex num-
bers has infinite transcendence degree.
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Remark 10.15. If a holomorphic function belongs to F , then also its derivative
belongs to F .

Proof. This follows from the formula

F ′(z0) =
1

2π i

∫
|z−z0|=r

F (z)

(z − z0)2
dz.

Remark 10.16. Let F be holomorphic function defined on an open domain,
which maps some F-complex number a to an F–complex number F (a). Then
F is locally in F if and only if its derivative is.

Proof. This follows from the fact that if a0 and b are in F , then (anb
n)n≥0 is

an F–sequence if and only if (nanbn−1)n≥1 is an F-sequence.

Pour-El and Richards ([6]) have shown that this is not true for functions of
the reals: There is a recursive C1–function with non–recursive derivative.

Remark 10.17. Let F be a non-constant holomorphic function which belongs
to F . Then a is in F if and only if F (a) is in F .

Proof. Assume first that F ′(a) is not zero. Then we can find a small open
rectangle O with lower elementary endpoints which contains a and such that F
defines a homeomorphism between U and F (U). We can make U small enough
such that F � U satisfies the conditions of Theorem 7.3 (see also Lemma 7.4).
Then the inverse of F � U is in F and maps F (a) to a.

If F ′(a) = 0, let n be minimal such that F (n+1)(a) is not zero. Since F (n) is
in F and F (n)(a) = 0, the above shows that a is in F .

We close with two more examples.

7.
The function exp( 1z ) is lower elementary on every annulus {z | r < |z| }, r > 0,
but not on C \ {0}.

8.
There is a lower elementary function f : N → {0, 1} such that n 7→ f(2n) is not
lower elementary. Consider the series F (z) =

∑∞
n=0 anz

n, where an = f(2n).
F is holomorphic on E and lower elementary on every compact subset of E, but
the sequence (an) is not lower elementary.

Added in proof (26.9.2010)
The definition of a (primitive) recursive function F : R → R given by E. Specker
in [9] is equivalent to the following: There are (primitive) recursive functions
d : N → N and f : Q×N → Q such that for all e ∈ N>0 and all a ∈ Q and x ∈ R

|x− a| < 1

d(e)
→ |F (x)− f(a, e)| < 1

2e
.
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Locally this agrees with our Definition 3.1.
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