On a question of Herzog and Rothmaler

A.Pillay M.Ziegler

1 Introduction

Herzog and Rothmaler gave the following purely topological characterization of stable theories. (See the exercises 11.3.4 - 11.3.7 in [2]).

A complete theory T is stable iff for any model M and any extension $M \subset B$ the restriction map $S(B) \to S(M)$ has a continuous section.

In fact, if T is stable, taking the unique non-forking extension defines a continuous section of $S(B) \to S(A)$ for all subsets A of B, provided A is algebraically closed in T^{eq} . Herzog and Rothmaler asked, if, for stable T, there is a continuous section for *any* subset A of B. Or, equivalently, if for any A, $S(acl^{eq}(A)) \to S(A)$ has a continuous section .

This is an interesting problem, also for unstable T. Is it true that for any T and any set of parameters A the restriction map $S(acl(A)) \to S(A)$ has a continuous section? We answer the question by the following two theorems.

Theorem 1 Let A be a subset of a model of T. Assume that the Boolean algebra of $\operatorname{acl}(A)$ -definable formulas is generated by

- some countable set of formulas,
- all A-definable formulas,
- all formulas which are atomic over $\operatorname{acl}(A)$.

Then $S(acl(A)) \rightarrow S(A)$ has a continuous section.

The conditions of the theorems are satisfied if, for example, L and A are countable, or, if there are only countably many non-isolated types over acl(A).

Theorem 2 There is a theory of Morley rank 2 and Morley degree 1 such that $S(acl(\emptyset)) \rightarrow S(\emptyset)$ has no continuous section.

The second author thanks Sabine Koppelberg and Philipp Rothmaler for several discussions.

2 Proof of Theorem 1

Theorem 1 follows immediately from the next lemma. (Note that the map $S(acl(A)) \to S(A)$ is always open).

Lemma 3 Let A be a subalgebra of the Boolean algebra B such that the projection of Stone spaces $S(B) \rightarrow S(A)$ is open. Assume that B can be generated by

- some countable subalgebra C of B,
- the elements of A,
- all atoms of B.

Then the projection has a continuous section $\sigma : S(A) \to S(B)$

Without atoms as generators, the lemma is well-known. See for example Proposition 2.9 in S. Koppelberg's chapter on projective Boolean algebras in [1].

Proof: That the projection $S(B) \to S(A)$ is open means that for each b there is a smallest element $\pi(a)$ of A which contains b.¹

We first define a homomorphism $h: C \to A$ which satisfies

$$h(c) \subset \pi(c) \tag{1}$$

for each $c \in C$. Since C is countable, it is enough to show that we can extend any h defined on a finite subalgebra D to any finite extension D'. Let d_1, \ldots, d_n be the atoms of D. We can assume that D' just splits d_1 into two new atoms d' and d''. Since $h(d_1) \subset \pi(d_1) = \pi(d') \cup \pi(d'')$, we can extend h to D' by setting $h(d') = \pi(d') \cap h(d_1)$ and $h(d'') = h(d_1) \setminus h(d')$.

The condition (1) is equivalent to

$$c \subset a \Rightarrow h(c) \subset a \tag{2}$$

for all $c \in C$ and $a \in A$. Let C' be the subalgebra generated by C and A. (2) implies that we can extend h (uniquely) to a homomorphism $h : C' \to A$ which is the identity on A.

We have constructed so far a continuous section $\tau : S(A) \to S(C')$. We claim that any $p \in S(C')$ which has two different extensions to S(B) is projected to an isolated point of S(A). Indeed, let q_1 and q_2 be two extension of p. Since Bis generated over C' by atoms, q_1 and q_2 can be separated by an atom of B, so one, say q_1 , is isolated. Since the projection from $S(B) \to S(A)$ is open, q_1 is projected to an isolated point of S(A).

Now we can apply the next lemma, which shows that any section σ' : $S(C') \rightarrow S(B)$ gives a continuous section $\sigma = \sigma' \circ \tau : S(A) \rightarrow S(B)$. QED.

 $^{^{1}}A$ is then called a *relatively complete* subalgebra of B.

Lemma 4 Let $\tau : X \to Y$ and $\pi : Z \to Y$ be continuous maps, π surjective and closed. Assume that for every non-isolated element $x \in X$, $\tau(x)$ has exactly one preimage in Z. Then for every section of σ' of π the composition $\sigma' \circ \tau : X \to Z$ is continuous.

Proof: Let $\sigma': Y \to Z$ be any section of π and $\sigma = \sigma' \circ \tau$. Consider a closed subset C of Z. Since π is closed, $\pi(C)$ is closed and therefore also $\tau^{-1}(\pi(C))$. $\sigma^{-1}(C)$ is a subset of $\tau^{-1}(\pi(C))$. The difference consists of isolated points, whence also $\sigma^{-1}(C)$ is closed. QED.

3 Proof of Theorem 2

We consider the language

$$L = \{p_i \mid i < \omega\} \cup \{P_\alpha \mid \alpha < 2^\omega\} \cup \{E_\alpha \mid \alpha < 2^\omega\}$$

with unary predicates p_i and P_{α} and binary relations E_{α} . Fix a family $(X_{\alpha})_{\alpha<2^{\omega}}$ of infinite subsets of ω which are pairwise almost disjoint.

Consider the (incomplete) theory T^* which says that

- a) The p_i are pairwise disjoint and each of them has exactly two elements
- b) p_i is a subset of P_{α} if $i \in X_{\alpha}$ and otherwise disjoint from P_{α} .
- c) The intersection of two different P_{α} and P_{β} is the union of the (finitely many) p_i with $i \in X_{\alpha} \cap X_{\beta}$.
- d) E_{α} is an equivalence relation on P_{α} , where it has two classes and cuts every p_i contained in P_{α} in two pieces.

 T^* is incomplete since it does not tell us how the E_{α} interact on the intersections of the P_{α} . But it is already clear that each completion has Morley rank 2 and degree 1. This is because the (parametrically) definable sets are, up to finite number of elements, Boolean combinations of the E_{α} -classes, which are infinite and almost disjoint.

To describe a completion T we construct a model M of T^* . We have not much choice for the p_i and the P_{α} : We let ω be the universe of M and define $p_i(M) = \{2i, 2i + 1\}$ and

$$P_{\alpha}(M) = \bigcup_{i \in X_{\alpha}} p_i(M).$$

Fix a list $(f_{\alpha})_{\alpha < 2^{\omega}}$ of all choice functions which pick an element from each p_i :

$$f_{\alpha}(i) \in p_i(M).$$

We complete the construction of M by choosing, for each α , the two classes of E_{α} in such a way that Axiom d) is satisfied and both classes contain infinitely many elements of

$$\{f_{\alpha}(i) \mid i \in X_{\alpha}\}.$$

It is clear from the construction that M has an automorphism which swaps the elements of each p_i . This shows that the only \emptyset -definable sets are Boolean combinations of the p_i and the P_{α} . Also it is clear that $M = \operatorname{acl}(\emptyset)$.

Now we show that there is no continuous section $\sigma : \mathcal{S}(\emptyset) \to \mathcal{S}(M)$. We need some notation.

Let $p_i^* \in \mathcal{S}(\emptyset)$ denote the complete type axiomatized by $p_i(x), P_{\alpha}^* \in \mathcal{S}(\emptyset)$ the unique non–algebraic type containing $P_{\alpha}(x)$.

For each element a of M let q_a be the type of a over M. Let C^1_{α} and C^2_{α} be the two classes of E_{α} in P_{α} . These are two strongly minimal sets and we denote by e^1_{α} and e^2_{α} the corresponding strongly minimal types in S(M).

Now suppose that σ is a continuous section. Then each $\sigma(p_i)$ is q_a for some $a \in p_i(M)$. So there is an $\alpha < 2^{\omega}$ such that

$$\sigma(p_i) = q_{f_\alpha(i)}$$

for all i.

Let, for j = 1, 2, I^j be the set of all $i \in X_{\alpha}$ with $f_{\alpha}(i)$ in C^j_{α} . I^1 and I^2 form a partition of X_{α} and both sets are infinite by construction.

The sequence $(p_i^*)_{i \in I^1}$ converges (in $S(\emptyset)$) to P_{α}^* , the sequence

$$(\sigma(p_i^*))_{i \in I^1} = (q_{f_\alpha(i)})_{i \in I^1}$$

converges in S(M) towards e_{α}^1 . Whence $\sigma(P_{\alpha}^*) = e_{\alpha}^1$. In the same way it follows that $\sigma(P_{\alpha}^*) = e_{\alpha}^2$, which is a contradiction.

References

- J. Donald Monk and Robert Bonnet, editors. Handbook of Boolean Algebras, volume 3. North–Holland, 1989.
- [2] Philipp Rothmaler. Introduction to Model Theory. Gordon & Breach Science Publishers, 2000.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

MATHEMATISCHES INSTITUT UNIVERSITÄT FREIBURG, GERMANY