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Abstract. Tent and Ziegler proved that the automorphism group of the

Urysohn sphere is simple and that the automorphism group of the Urysohn

space is simple modulo bounded automorphisms. A key component of their
proof is the definition of a stationary independence relation (SIR). In this

paper we prove that the existence of a SIR satisfying some extra axioms is

enough to prove simplicity of the automorphism group of a countable struc-
ture. The extra axioms are chosen with applications in mind, namely homo-

geneous structures which admit a “metric-like amalgamation”, for example all

primitive 3-constrained metrically homogeneous graphs of finite diameter from
Cherlin’s list.

1. Introduction

In 2011, Macpherson and Tent [MT11] proved that the automorphism groups of
Fräıssé limits of free amalgamation classes are simple. This was followed by two pa-
pers of Tent and Ziegler [TZ13b, TZ13a] where they prove that the isometry group
of the Urysohn space (the unique complete separable homogeneous metric space
universal for all finite metric spaces) modulo bounded isometries (i.e. isometries
f with a finite bound on the distance between x and f(x)) is simple and that the
isometry group of the Urysohn sphere is simple. Later, Evans, Ghadernezhad and
Tent [EGT16] proved simplicity for automorphism groups of some Hrushovski con-
structions, and Li [Li18] proved simplicity for the structures from Cherlin’s list of
26 primitive triangle-constrained homogeneous structures with 4 binary symmetric
relations (see appendix of [Che98]).

More recently, Tent and Ziegler’s method was generalised to asymmetric struc-
tures. Li [Li19] proved that the automorphism groups of some of Cherlin’s asym-
metric structures in the appendix of [Che98] are simple. The same result for non-
trivial linearly ordered free homogeneous structures has been proved independently
by Calderoni, Kwiatkowska and Tent [CKT20] and Li [Li20]. Also in [Li20], sim-
plicity was proved for the automorphism groups of the universal n-linear orders
for n ≥ 2. Another recent example where (non-stationary) independence relations
have been used to prove strong results about automorphism groups of structures is
a paper by Kaplan and Simon [KS19].

In this paper, we adapt the methods of Tent and Ziegler and prove the following
theorem (definitions and examples will be given in the upcoming paragraphs).

Theorem 1.1. Let F be a transitive countable relational structure with a bounded 1-
supported metric-like stationary independence relation |̂ . Then Aut(F) is simple.
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As direct corollaries of Theorem 1.1, we get the following two more concrete
results, for which the definitions will be given in Section 4.

Theorem 1.2. Let M = (M,⊕,�) be a finite archimedean partially ordered com-
mutative semigroup with at least two elements and let F be a homogeneous M-metric
space which realises all distances. Assume that F admits an M-shortest path inde-
pendence relation |̂ and that |̂ is a 1-supported SIR. Then Aut(F) is simple.

Theorem 1.3. If G is a countably infinite metrically homogeneous graph which cor-
responds to one of the primitive 3-constrained finite-diameter classes from Cherlin’s
catalogue [Che11], then Aut(G) is simple.

1.1. Stationary independence relations. The notion of stationary indepen-
dence relations (Definition 1.4) was developed by Tent and Ziegler in their paper
on the Urysohn space [TZ13b]. It has several generalisations (e.g. for structures
with closures [EGT16]), but for our purposes the original variant suffices.

Let F be a relational structure and let A,B ⊆ F be finite subsets. We will
identify them with the substructures induced by F on A and B respectively and
by AB we will denote the union A ∪ B (and hence also the substructure induced
by F on AB). If the set A = {a} is singleton, we may write a instead of {a}.
Uppercase letters will denote sets while lowercase will denote the elements of the
structure, which we call vertices owing to the combinatorial background of part of
the authors. As is usual in this area, if A ⊆ F, we sometimes assume that it has
some implicit enumeration. This is clear from the context and should not cause
any confusion.

Let A,X ⊆ F. By the type of A over X (denoted by tp(A/X)) we mean the
orbit of A under the action of the stabilizer subgroup of Aut(F) with respect to
X. If p = tp(A/X), we say that B ⊆ F realises p (and denote it as B |= p) if B
lies in p, in other words, if there is an automorphism of F fixing X pointwise which
maps A to B. To simplify the notation, we write tp(A) for tp(A/∅). Our types
correspond to realised types in a (strongly) homogeneous structure in the standard
model-theoretic terminology. In fact, we may assume that the language is chosen so
that F is homogeneous, that is, partial automorphisms between finite substructures
of F extend to automorphisms.

Definition 1.4 (Stationary Independence Relation). Let F be a relational struc-
ture. A ternary relation |̂ on finite subsets of F is called a stationary independence
relation (SIR, with A |̂

C
B being pronounced “A is independent from B over C”)

if the following conditions are satisfied:

SIR1 (Invariance). The independence of finite subsets of F only depends on their
type. In particular, for every automorphism f of F, we have A |̂

C
B if and

only if f(A) |̂
f(C)

f(B).

SIR2 (Symmetry). If A |̂
C
B, then B |̂

C
A.

SIR3 (Monotonicity). If A |̂
C
BD, then A |̂

C
B and A |̂

BC
D.

SIR4 (Existence). For every A,B and C in F, there is some A′ |= tp(A/C) with
A′ |̂

C
B.

SIR5 (Transitivity) If A |̂
C
B and A |̂

BC
B′, then A |̂

C
B′.

SIR6 (Stationarity) If A and A′ have the same type over C and are both inde-
pendent over C from some set B then they also have the same type over
BC.

Note that by an observation of [Bau16], these axioms are redundant as Mono-
tonicity can be derived from the rest of them.

Stationary independence relations correspond to “canonical amalgamations” by
putting A |̂

C
B if and only if the canonical amalgamation of AC and BC over C
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is isomorphic to ABC. The notion of canonical amalgamations can be formalised,
see [ABWH+17c].

To make our proofs shorter, we will sometimes use Symmetry, Monotonicity and
Existence implicitly. The following observation which follows from Invariance will
be useful later.

Observation 1.5. If F is a relational structure, |̂ a SIR on F and A |̂
C
B, then

A |̂
C
BC.

Definition 1.6 (k-supported SIR). Let k be a positive integer. We say that a SIR
|̂ is k-supported if for every a, b, C such that a |̂

C
b there is C ′ ⊆ C such that

|C ′| ≤ k and a |̂
C′
b.

Observation 1.7. For k = 1, k-supportedness is equivalent to:
(1-supportedness) If a |̂

C
b and C = C1 ∪ C2 then a |̂

C1
b or a |̂

C2
b.

We say that a structure F is transitive if tp(a) = tp(b) for every a, b ∈ F.

Definition 1.8 (Metric-like SIR). Let F be a relational structure with a SIR |̂ .
We say that |̂ is metric-like if the following conditions are satisfied:

(1) If a /∈ A, then a 6 |̂
A
a.

(2) For every a ∈ F there is b ∈ F such that a 6= b and a 6 |̂ ∅ b.
(3) (Perfect triviality) If A |̂

C
B and C ⊆ C ′ then A |̂

C′
B.

Lemma 1.9. Let F be a relational structure with a SIR |̂ which satisfies Perfect
triviality. Then |̂ satisfies

(1) (Metricity) If A |̂
C1C2

B and C1 |̂ D B then A |̂
C2D

B.

(2) (Triviality) If A |̂
B
C and A |̂

B
D then A |̂

B
CD.

Proof. First assume thatA |̂
C1C2

B and C1 |̂ D B. By Perfect triviality, C1 |̂ C2D
B

and A |̂
C1C2D

B. Using Transitivity it follows that A |̂
C2D

B, which proves

Metricity.
Now assume that A |̂

B
C and A |̂

B
D. By Perfect triviality we get A |̂

BC
D

and by Observation 1.5 and Monotonicity it then follows that that A |̂
BC

CD.

Using Transitivity together with A |̂
B
C then implies A |̂

B
CD. �

In fact, Metricity is equivalent to Perfect triviality if |̂ is a SIR. The following
is a simple corollary of Triviality which will be useful later.

Corollary 1.10. If a |̂ ∅ x for every x ∈ X, then a |̂ ∅X.

Definition 1.11 (Geodesic sequence1). Let F be a relational structure with a SIR
|̂ . We say that a sequence a1, . . . , an ∈ F of pairwise distinct vertices of F is

geodesic if for every 1 ≤ i < j < k ≤ n it holds that ai |̂ aj ak.

Definition 1.12. Let F be a relational structure with a SIR |̂ . We say that |̂
is bounded if it satisfies

(Boundedness) There exists an integer k0 such that if a0, . . . , ak is a geodesic
sequence with k ≥ k0, then a0 |̂ ∅ ak.

We denote the smallest such k0 by ‖ |̂ ‖.

The reader is encouraged to have the following examples in mind when reading
this paper.

1We thank the anonymous referee for suggesting this definition.
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Example 1. Let F be the Fräıssé limit of all finite metric spaces using only dis-
tances {0, 1, . . . , n} for some fixed n ≥ 2. Define |̂ on F by putting A |̂

C
B if and

only if for every a ∈ A and every b ∈ B it holds that d(a, b) = min({n} ∪ {d(a, c) +
d(b, c) : c ∈ C}). It is straightforward to check that |̂ is a bounded 1-supported
metric-like SIR with ‖ |̂ ‖ = n.

For the Urysohn sphere, the only axiom which we do not have at hand is, para-
doxically, Boundedness.

Example 2. Let U1 be the Urysohn sphere, that is, the unique homogeneous
separable complete metric space with distances from [0, 1] which is universal for all
finite metric spaces with distances from [0, 1]. We will denote its metric by d (clearly,
one can view U1 as a relational structure by introducing a binary relation for every
distance). Define the relation |̂ on finite subsets of U1 by putting A |̂

C
B if and

only if for every a ∈ A and every b ∈ B it holds that d(a, b) = min({1} ∪ {d(a, c) +
d(b, c) : c ∈ C}). One can check that |̂ is a 1-supported metric-like SIR, but does
not satisfy Boundedness, as for every k one can find a geodesic sequence with k
vertices such that the distance of every consecutive pair of them is smaller that

1
k−1 .

Example 3 (k-supported metric-like SIR). Let k ≥ 1 and n ≥ 3 be integers. Put
S = {1, . . . , n}k ∪ {0}k, let A be a set and let d : A2 → S be a function. Let �
be the product order on S (i.e. (a1, . . . , ak) � (b1, . . . , bk) if and only if ai ≤ bi
for every 1 ≤ i ≤ k) and let ⊕ be the component-wise addition on S capped at n
(i.e. (a1, . . . , ak) ⊕ (b1, . . . , bk) = (c1, . . . , ck), where ci = min(n, ai + bi) for every
1 ≤ i ≤ k).

We say that (A, d) is an [n]k-metric space if the following holds for every x, y, z ∈
A:

(1) d(x, y) = d(y, x),
(2) d(x, y) = (0, . . . , 0) if and only if x = y,
(3) d(x, z) � d(x, y)⊕ d(y, z).

One can verify that the class of all finite [n]k-metric spaces is a Fräıssé class.
Consider the structure Mk = (Mk, d), which is the Fräıssé limit of the class of all
[n]k-metric spaces, and define |̂ on Mk by putting A |̂

C
B if and only if for every

a ∈ A and every b ∈ B it holds that d(a, b) = inf�{d(a, c)⊕ d(c, b) : c ∈ C}. As �
has a maximum, the infimum of the empty set is (n, . . . , n).

It is easy to verify that |̂ is a bounded metric-like SIR. Moreover, it is k-
supported, but not k′-supported for any k′ < k, which is witnessed by vertices
a, b, c1, . . . , ck ∈ Mk such that a |̂ {c1,...,ck} b, d(a, ci) = (1, . . . , 1) for every i and

d(b, ci) is equal to 1 on the i-th coordinate and equal to 2 everywhere else.

2. Geodesic sequences

In this section we prove some auxiliary results about geodesic sequences which
will be used later. Fix a transitive relational structure F with a metric-like SIR |̂ .

Lemma 2.1. Let a1, . . . , an be a geodesic sequence of vertices of F and let b ∈
F \ {an}. Then there is an+1 |= tp(b/an) such that a1, . . . , an+1 is a geodesic
sequence.

Proof. Using Existence, pick an+1 |= tp(b/an) such that a1 · · · an−1 |̂ an an+1.

Consider any 1 ≤ i < j ≤ n − 1. By Monotonicity, ai |̂ an an+1 and hence, by

Perfect triviality, ai |̂ ajan an+1. Since a1, . . . , an is a geodesic sequence, we know

that ai |̂ aj an. Transitivity now implies that ai |̂ aj an+1 and hence a1, . . . , an+1

is a geodesic sequence.
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�

Lemma 2.2. Let a, b, c ∈ F be distinct such that a |̂ ∅ b. There is a geodesic

sequence a0, a1, . . . , an ∈ F satisfying the following:

(1) a = a0 and b = an, and
(2) for every 0 ≤ i ≤ n− 1 it holds that tp(aiai+1) = tp(ac),
(3) n = ‖ |̂ ‖.

Proof. First observe that since all vertices have the same type, for every v ∈ F there
is v′ ∈ F such that tp(vv′) = tp(ac). Put n = ‖ |̂ ‖ and use Lemma 2.1 repeatedly
to obtain a geodesic sequence a, x1, . . . , xn such that all consecutive pairs of vertices
have the type tp(ac). We know that a |̂ ∅ xn. By Stationarity, tp(xn/a) = tp(b/a),

hence there exists an automorphism f of F which fixes a and maps xn to b. By
Invariance, f(a), f(x1), . . . , f(xn) has the desired properties. �

Lemma 2.3. Let v1, . . . , vk and w1, . . . , wk be geodesic sequences of vertices of F
such that for every 1 ≤ i < k we have tp(vivi+1) = tp(wiwi+1). Then tp(v1 · · · vk) =
tp(w1 · · ·wk).

Proof. We shall prove by induction on m that tp(v1 · · · vm) = tp(w1 · · ·wm). For
m = 2 this is true by the assumption. Assume now that the statement is true for
some m. Using the fact that v1, . . . , vk and w1, . . . , wk are geodesic sequences and
Triviality we get that v1 · · · vm−1 |̂ vm vm+1 and w1 · · ·wm−1 |̂ wm

wm+1. By the

assumption we have tp(vmvm+1) = tp(wmwi+m), hence Stationarity together with
Invariance give tp(v1 · · · vm+1) = tp(w1 · · ·wm+1).

�

Proposition 2.4. Let a, b, c be vertices of F satisfying the following:

(1) a |̂
b
c,

(2) there is a geodesic sequence a = v1, . . . , vk = b,
(3) there is a geodesic sequence b = w1, . . . , w` = c.

Then there is a geodesic sequence a = x1, . . . , xk+`−1 = c such that tp(x1 · · ·xk) =
tp(v1 · · · vk) and tp(xk · · ·xk+`−1) = tp(w1 · · ·w`).

Proof. Use Lemma 2.1 and the fact that all vertices have the same type ` − 1
times to extend v1, . . . , vk by vertices w′2, . . . , w

′
` such that v1, . . . , vk, w

′
2, . . . , w

′
` is

a geodesic sequence and for every 1 ≤ i < ` we have tp(w′iw
′
i+1) = tp(wiwi+1),

where we put w′1 = vk to simplify the notation.
In particular, w′1, . . . , w

′
` is a geodesic sequence. Using Lemma 2.3 we get

that tp(w1 · · ·w`) = tp(w′1 · · ·w′`), so in particular tp(w1w`) = tp(w′1w
′
`). Since

w1 = w′1 = vk, we have that tp(w`/vk) = tp(w′`/vk). By the hypothesis and the con-
struction, w` |̂ vk v1 and w′` |̂ vk v1. Stationarity implies that w′` |= tp(w`/v1vk),

so in particular w′` |= tp(w`/v1).
In other words, there is an automorphism g of F such that g(v1) = v1 and

g(w′`) = w`. The image of v1, . . . , vk, w
′
2, . . . , w

′
` under g then gives the desired

geodesic sequence x1, . . . , xk+`−1. �

Let a, b ∈ F be distinct. We say that b is almost free from a if a 6 |̂ ∅ b and for

every c ∈ F different from a, b such that a |̂
b
c it holds that a |̂ ∅ c.

Observation 2.5. Let a, b ∈ F be such that b is almost free from a. For every
a′, b′ ∈ F such that tp(a′b′) = tp(ab) it holds that b′ is almost free from a′.

Lemma 2.6. Suppose that |̂ is bounded. For every a ∈ F and every finite X ⊆ F
such that a /∈ X there is b ∈ F such that a is almost free from b, b is almost free
from a, and b |̂

a
X. In particular, b 6 |̂ ∅ a and b |̂ ∅X.
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Proof. We claim that there exist a′, b′ ∈ F such that b′ is almost free from a′ and
a′ is almost free from b′. Suppose that this is true. Since F is transitive, there is
an automorphism f such that f(a′) = a. Pick b |= tp(f(b′)/a) such that b |̂

a
X.

By Observation 2.5, b is almost free from a and a is almost free from b. The “in
particular” part is immediate using Corollary 1.10.

Hence it suffices to prove the claim. Pick a′, b′ ∈ F such that b′ 6 |̂ ∅ a
′ and the

length of the longest geodesic sequence starting at a′ finishing at b′ is as large as
possible. (As |̂ is bounded, such a′, b′ exist.) Pick c ∈ F such that a′ |̂

b′
c.

By Proposition 2.4, we can extend the geodesic sequence from a′ to b′ by some
c′ |= tp(c/b′). By the properties of a′, b′ we get that a′ |̂ ∅ c

′. Invariance and

Stationarity then imply that a′ |̂ ∅ c and consequently b′ is almost free from a′.

To prove that a′ is almost free from b′, pick c ∈ F such that b′ |̂
a′
c. Since

the reverse of a geodesic sequence is a geodesic sequence, we extend the geodesic
sequence from b′ to a′ by some c′ |= tp(c/a′) as above. Suppose that b′ 6 |̂ ∅ c

′.

Since F is transitive, there is an automorphism f such that f(b′) = a′. The image
of the geodesic sequence from b′ to c′ is then a geodesic sequence starting at a′

which is longer than the geodesic sequence from a′ to b′ we started with. This is a
contradiction, hence b′ |̂ ∅ c

′. As before, we get that a′ is almost free from b′ which

concludes the proof. �

3. Proof of Theorem 1.1

We will closely follow the proof from the Tent–Ziegler paper on the Urysohn
sphere [TZ13a] and use the following result by Tent and Ziegler [TZ13b].

Definition 3.1. Let F be a countable structure with a stationary independence
relation |̂ , let g ∈ Aut(F), let A ⊆ F be finite and let p = tp(a/A) be a type. We
say that g moves p almost maximally if there is a realisation x |= p such that

x |̂
A

g(x).

Theorem 3.2 (Corollary 5.4, [TZ13b]). Let F be a countable structure with a
stationary independence relation and let g be an automorphism of F which moves
every type over every finite set almost maximally. Then every element of Aut(F)
is a product of sixteen conjugates of g.

Throughout the section, we fix F and |̂ as in Theorem 1.1 (F is a transitive
countable relational structure with a bounded 1-supported metric-like stationary
independence relation |̂ ) and put G = Aut(F). As before, we may assume that F
is homogeneous (this will slightly simplify the proof of Lemma 3.6).

Lemma 3.3. If g ∈ G is not the identity then there is a ∈ F and h ∈ G which is a
product of ‖ |̂ ‖ conjugates of g such that a |̂ ∅ h(a).

Proof. Let a ∈ F be such that a 6= g(a) and pick b ∈ F such that a |̂ ∅ b (Existence).

Use Lemma 2.2 to obtain a geodesic sequence a = a0, . . . , an = b such that n =
‖ |̂ ‖ and for every 0 ≤ i ≤ n−1 we have tp(aiai+1) = tp(ag(a)). This means that
there are automorphisms h0, . . . , hn−1 such that hi(a) = ai and hi(g(a)) = ai+1.
Then high

−1
i moves ai to ai+1 and the statement follows. �

Lemma 3.4. Let g ∈ G be such that for some a ∈ F we have a |̂ ∅ g(a). Then for

every finite set A ⊂ F there is x ∈ F with x |̂ ∅A and x 6= g(x).

Proof. We may assume that a ∈ A. Put Y = A ∪ g−1(A) and choose b ∈ F with
b 6= a and b 6 |̂ ∅ a ( |̂ is metric-like) such that moreover b |̂

a
Y (Existence and

Invariance). This means that b /∈ g−1(A) (if b ∈ g−1(A), then b ∈ Y , so b |̂
a
b,
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which is in contradiction with part (1) of Definition 1.8) and hence g(b) /∈ A.
We know that a |̂ ∅ g

−1(a) (by Invariance) and also b |̂
a
g−1(a), thus b |̂ ∅ g

−1(a)

(Transitivity) and so g(b) |̂ ∅ a (Invariance). This means that b 6= g(b) and therefore

g(b) /∈ A ∪ {b}.
Use Lemma 2.6 to obtain x ∈ F such that x 6 |̂ ∅ g(b) and x |̂ ∅Ab. By Mono-

tonicity, x |̂ ∅A and x |̂ ∅ b, hence also g(x) |̂ ∅ g(b), thus x 6= g(x). �

Let X ⊂ F be a finite set and let a ∈ F be such that a |̂ ∅X. We call the type

tp(a/X) a free type. (It is the unique such type over X.)

Lemma 3.5. Let g ∈ G be such that for every free type p there is a realisation
a |= p with g(a) 6= a. Then for every finite X ⊂ F and every type q = tp(x/X) with
x /∈ X, there is a realisation c |= q such that g(c) 6= c.

Proof. Let a be a vertex such that a |̂ ∅X and g(a) 6= a (a exists by the assump-

tions of this lemma) and let b |= q be such that b |̂
X
g(a).

If b 6 |̂ ∅ g(a) then pick c |= q such that c |̂
X
ag(a). This means that c 6 |̂ ∅ g(a)

(by Stationarity and Invariance) and c |̂ ∅ a (by Transitivity), giving us g(c) 6= c.

So we have b |̂ ∅ g(a). Use Lemma 2.6 to obtain a′ ∈ F such that a′ 6 |̂ ∅ b,
a′ |̂ ∅X, and a′ is almost free from b. By Stationarity, we have that a |= tp(a′/X),

hence there is f ∈ G fixing X pointwise such that f(a′) = a. Put c′ = f(b). In
particular, c′ |= q, a 6 |̂ ∅ c

′, and a is almost free from c′ (Observation 2.5).

Choose c |= tp(c′/Xa) such that c |̂
Xa

g(a). In particular, c 6 |̂ ∅ a (Invariance).

By Observation 2.5, a is almost free from c. Using 1-supportedness, c |̂
Xa

g(a)

implies that either c |̂
a
g(a) (in which case c |̂ ∅ g(a) and hence g(c) 6= c), or

c |̂
X
g(a). In this case we know that tp(c/X) = tp(b/X) and b |̂

X
g(a) (using

Perfect triviality on b |̂ ∅ g(a)), hence by Stationarity and Invariance, c |̂ ∅ g(a),

thus again g(c) 6= c. �

We say that g ∈ G moves type p by distance k if there is a |= p and a geodesic
sequence a = a0, . . . , ak = g(a). If p = tp(x/X) is a type and h is an automorphism
or a partial automorphism defined on a finite set such that X ⊆ Dom(h), we
denote h(p) = tp (h′(x)/h′(X)), where h′ is some automorphism of F extending h
(remember that we assumed that F is homogeneous).

Lemma 3.6. Let g ∈ G be such that g moves all types almost maximally or by
distance n. Then there exists h ∈ G such that [g, h] = g−1h−1gh moves all types
almost maximally or by distance 2n.

Proof. As in [TZ13a], we construct h by a “back-and-forth” construction as the
union of a chain of finite partial automorphisms. We show the following: Let h′ be
already defined on a finite set U and let p = tp(x/X) be a type. Then h′ has an
extension h such that [g, h] moves p almost maximally or by distance 2n.

We can assume that X ∪ g−1(X) ⊆ U . Put V = h′(U). Let a′ be a realisation
of p such that a′ |̂

X
Ug−1(U) and let b′ be a realisation of h′(tp(a′/U)) (which is

a type over V ). By the hypothesis on g there are realisations a |= tp(a′/Ug−1(U))
and b |= tp(b′/V ) such that either a |̂

Ug−1(U)
g(a), or there is a geodesic sequence

a = a0, . . . , an = g(a) and similarly for b. We also have

a |̂
X

Ug−1(U) and b |̂
h′(X)

V.

Let h0 be the isomorphism Ua ' V b and let c be a realisation of h−1
0 (tp(g(b)/V b))

(which is a type over Ua) such that c |̂
Ua
g(a). Put h to be the isomorphism
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Uac ' V bg(b). Observe that [g, h](a) = g−1(c). It remains to prove that a witnesses
that [g, h] moves p almost maximally or by distance 2n.

Since a |̂
X
g−1(U), we know that g(a) |̂

g(X)
U . Using Metricity, we get

c |̂
g(X)a

g(a),

thus from 1-supportedness we know that either c |̂
a
g(a) or c |̂

g(X)
g(a). In the

second case we get g−1(c) |̂
X
a, which implies that [g, h] moves p almost maximally.

Hence we can assume that

c |̂
a

g(a).

By the choice of a and b we know that one of the following cases occurs:

(1) First suppose that there are geodesic sequences b = b0, . . . , bn = g(b) and
g(a) = a0, . . . , an = a (the reverse of a geodesic sequence is a geodesic
sequence by Symmetry). From the construction we know that tp(ac) =
tp(bg(b)). This implies that there is a geodesic sequence a = c0, . . . , cn = c.
Since g(a) |̂

a
c, Proposition 2.4 gives a geodesic sequence starting at g(a)

and finishing at c using 2n+1 vertices (including c and g(a)). Finally, taking
the image of this sequence under g−1 gives a geodesic sequence starting at
a and finishing at g−1(c) = [g, h](a) using 2n+ 1 vertices. This means that
a witnesses that [g, h] moves p by distance 2n.

(2) Now assume that a |̂
Ug−1(U)

g(a). Then in fact we have a |̂
X
g(a), be-

cause a |̂
X
Ug−1(U) (Metricity). As U ⊇ Xg−1(X), a |̂

X
U also im-

plies g(a) |̂
g(X)

X (by Invariance and Monotonicity), which together with

a |̂
X
g(a) implies a |̂

g(X)
g(a) (Metricity). Thus from c |̂

a
g(a) we get

c |̂
g(X)

g(a) (yet again Metricity) and thus g−1(c) |̂
X
a, i.e. a witnesses

that [g, h] moves p almost maximally.
(3) Otherwise we have b |̂

V
g(b). Using that h is an isomorphism of Uac and

V bg(b) and Invariance we obtain a |̂
U
c. Then we get a |̂

X
c, because

a |̂
X
U (Metricity), and then, combining with c |̂

a
g(a) using Metric-

ity again, we obtain c |̂
X
g(a). As in the previous case, a |̂

X
U implies

g(a) |̂
g(X)

X and hence c |̂
g(X)

g(a), or g−1(c) |̂
X
a, i.e. a witnesses

that [g, h] moves p almost maximally.

�

Now we prove the following proposition, Theorem 1.1 is then its direct conse-
quence.

Proposition 3.7. Let F be a countable relational structure with a bounded 1-
supported metric-like stationary independence relation |̂ and let g be a non-identity
automorphism of F. Then there is an automorphism of F which is a product of at
most 2‖ |̂ ‖2 conjugates of g and g−1 and moves every type over every finite set
almost maximally.

Proof. From Lemma 3.3 we get an automorphism g0 which is a product of at most
‖ |̂ ‖ conjugates of g such that there is a ∈ F with a |̂ ∅ g0(a). Using Lemma 3.4

we get that in fact for every free type there is a realisation which is not fixed by g0.
Let p = tp(x/X) be a type. Either x ∈ X (then x |̂

X
g(x), hence g0 moves q

almost maximally), or x /∈ X and thus by Lemma 3.5 there is a realisation of p
which is not fixed by g0. This means that g0 moves all types almost maximally or
by distance 1.
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Put n = dlog2(‖ |̂ ‖)e and construct a sequence g0, g1, . . . , gn of automorphisms
of F using Lemma 3.6 such that every gi moves all types almost maximally or by
distance 2i, and if i ≥ 1 then gi is a product of two conjugates of gi−1 and g−1

i−1. For
gn we get that it moves every type almost maximally or by distance at least ‖ |̂ ‖.
In the latter case, we have for every type p a realisation a |= p and a geodesic
sequence a = a0, . . . , ak = g(a), where k ≥ ‖ |̂ ‖. Boundedness (Definition 1.12)
implies that a |̂ ∅ g(a), i.e. gn moves p almost maximally, and hence gn moves all

types almost maximally.
By the construction, gn is a product of at most 2dlog2(‖ |̂ ‖)e conjugates of g0

and g−1
0 , hence a product of at most 2dlog2(‖ |̂ ‖)e‖ |̂ ‖ ≤ 2‖ |̂ ‖2 conjugates of g

and g−1. �

Proof of Theorem 1.1. Let g be a non-identity automorphism of F. We need to
prove that if N is a normal subgroup of G such that g ∈ N , then N = G. If g ∈ N ,
then clearly g−1 ∈ N . Let h ∈ G. By Proposition 3.7 and Theorem 3.2, we know
that h can be written as a product of conjugates of g and g−1, hence h ∈ N . This
is true for every h ∈ G, hence N = G and G is simple. �

4. Corollaries

In this section we prove Theorems 1.2 and 1.3.

4.1. Semigroup-valued metric spaces. We say that a tuple M = (M,⊕,�) is
a partially ordered commutative semigroup if the following hold:

(1) (M,⊕) is a commutative semigroup,
(2) (M,�) is a partial order which is reflexive (a � a for every a ∈M),
(3) for every a, b ∈M it holds that a � a⊕ b, and
(4) for every a, b, c ∈M it holds that if b � c then a⊕ b � a⊕ c (⊕ is monotone

with respect to �).

M is archimedean if for every a, b ∈ M there is an integer n such that n × a � b,
where by n× a we mean

a⊕ a⊕ · · · ⊕ a︸ ︷︷ ︸
n times

.

Note that if M is archimedean and non-trivial, it follows that M does not have an
identity.

Let L be a set. An L-edge-labelled graph is a tuple A = (A,E, d), where E ⊆
(
A
2

)
and d is a function E → L. Clearly, the set E can be inferred from the function d
and thus we omit it. For simplicity, we write d(x, y) instead of d({x, y}) and we put
d(x, x) = 0, where 0 is a symbol which is not an element of M. When convenient,
we naturally understand 0 as the neutral element with respect to ⊕ and as the
minimum element of �.

We say that A is complete if the graph (A,E) is a complete graph. Note that
an L-edge-labelled graph can equivalently be viewed as a relational structure with
an irreflexive binary symmetric relation Rm for every m ∈ L such that every pair
of vertices is in at most one relation.

For a partially ordered commutative semigroup M = (M,⊕,�), a complete M-
edge-labelled graph A = (A, d) is an M-metric space if for every triple a, b, c ∈ A
of distinct vertices it holds that d(a, b) � d(a, c)⊕ d(b, c) (the triangle inequality).

Let F be an M-metric space. We say that F admits an M-shortest path indepen-
dence relation if for every a, b ∈ F and C ⊆ F finite we have that {d(a, c)⊕ d(c, b) :
c ∈ C} has an infimum with respect to � (note that C can be empty which implies
that M has maximum inf�(∅)). If F admits an M-shortest path independence rela-
tion, then its M-shortest path independence relation is a ternary relation |̂ defined
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on finite subsets of F by putting A |̂
C
B if and only if for every a ∈ A and every

b ∈ B it holds that d(a, b) = inf�{d(a, c)⊕ d(c, b) : c ∈ C}.
Generalising concepts of Sauer [Sau12], Conant [Con19] (see also [HKN17]) and

Braunfeld [Bra17] (see also [KPR18]), Hubička, Konečný and Nešetřil [Kon19,
HKN18] introduced the framework of semigroup-valued metric spaces, which served
as a motivation for this paper. Given a partially ordered commutative semigroup
M = (M,⊕,�) and a “nice” family F of M-edge-labelled cycles, the structures of
interest are M-metric spaces which moreover contain no homomorphic images of
members of F . We will denote the class of all such finite structures MFM.

The conditions of F are strong enough that one can then prove that MFM is a
strong amalgamation class, its Fräıssé limit admits an M-shortest path indepen-
dence relation which is a SIR (provided that M has a maximum, otherwise one can
still get a local SIR), it has EPPA (see [HKN19, Sin17]) and a precompact Ramsey
expansion (see [HN19, NVT15]), but they are general enough that most known bi-
nary symmetric homogeneous structures can be viewed as such a semigroup-valued
metric space. In fact, it is conjectured that every primitive transitive homogeneous
structure in a finite binary symmetric language with trivial algebraic closures ad-
mits such an interpretation (Conjecture 1 in [Kon19]).

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. We need to prove that |̂ is metric-like and bounded. (In
fact, we do not need 1-supportedness for this, we only need it later in order to apply
Theorem 1.1.)

Since F is homogeneous, all vertices have the same type. As d(x, y) = 0 if and
only if x = y and ⊕ is monotone with respect to �, it follows that if a /∈ A,
then a 6 |̂

A
a. The fact that there are a 6= b ∈ F such that a 6 |̂ ∅ b follows from

Stationarity, the fact that M has at least two elements (remember that 0 /∈M) and
the fact that F realises all distances.

Suppose now that a |̂
C
b. If there was c′ ∈ F\C such that a 6 |̂

Cc′
b, this would

mean that inf�{d(a, c)⊕d(c, b) : c ∈ C∪{c′}} ≺ {d(a, c)⊕d(c, b) : c ∈ C} = d(a, b),
hence d(a, c′)⊕d(c′, b) 6� d(a, b), in other words, abc′ violates the triangle inequality
which is a contradiction. Consequently, |̂ satisfies Perfect triviality and hence |̂
is metric-like.

Next we prove that |̂ is bounded. Denote by 1 the maximum element of M
(M is finite and hence there is such an element). Assume that there are a, b ∈ M
such that a ⊕ b = a. This means (by associativity) that a ⊕ (n × b) = a for every
n. Let c ∈M be arbitrary. By archimedeanity there is n such that n× b � c. But
then a = a ⊕ (n × b) � c. Hence a � c for every c ∈ M, that is, a = 1. In other
words, for every a, b ∈M\{1} it holds that a⊕ b � a, which implies that whenever
a1, . . . , a|M| ∈M, then

|M|⊕
i=1

ai = 1.

We can use this observation to prove that ‖ |̂ ‖ ≤ |M|. Indeed, if a0, . . . , a|M|
is a geodesic sequence, we know that d(a0, ai+1) = d(a0, ai) ⊕ d(ai, ai+1). Using
induction we get that

d(a0, a|M|) = d(a1, a2)⊕ d(a2, a3)⊕ · · · ⊕ d(a|M|−1, a|M|),

that is, d(a0, a|M|) is a sum of |M| elements of M and hence d(a0, a|M|) = 1, which
means that indeed a0 |̂ ∅ a|M|.

We have proved that |̂ is bounded and metric-like, hence we can apply Theo-
rem 1.1 to show that Aut(F) is simple. �
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Note that whenever � is a linear order, the corresponding M-shortest path
independence relation is necessarily 1-supported. The following theorem is a direct
consequence of this fact, Theorem 1.2 and existing results on semigroup-valued
metric spaces [Kon19, HKN18].

Let S ⊆ R+ be a finite subset of positive reals such that the following operation
⊕S : S2 → S is associative:

a⊕S b = max{x ∈ S : x ≤ a+ b}.

Delhommé, Laflamme, Pouzet, and Sauer [DLPS07] studied and Sauer later clas-
sified [Sau13a, Sau13b] such subsets. Ramsey expansions for all such classes of
(S,⊕S ,≤)-metric spaces were obtained by Hubička and Nešetřil [HN19], and Hubička,
Konečný, Nešetřil and Sauer [HKNS20] (Nguyen Van Thé [NVT09] earlier proved
some partial results). We contribute to the study of such classes by the following
result:

Theorem 4.1. Let S ⊆ R+ be a finite subset of positive reals such that MS =
(S,⊕S ,≤) is an archimedean partially ordered commutative semigroup. Then the
automorphism group of the Fräıssé limit of the class of all finite MS-metric spaces
is simple.

4.2. Metrically homogeneous graphs. A metrically homogeneous graph is a
graph whose path-metric is a homogeneous metric space. Cherlin [Che11, Che17]
gave a list of such graphs by describing the corresponding amalgamation classes of
metric spaces. The vast majority of the list is occupied by the 5-parameter classes
AδK1,K2,C1,C2

, where δ denotes the diameter of such spaces (i.e. they only use

distances {1, . . . , δ}) and the other four parameters describe four different families
of forbidden triangles (for example, all triangles of odd perimeter smaller than 2K1

are forbidden).
Aranda, Bradley-Williams, Hubička, Karamanlis, Kompatscher, Konečný and

Pawliuk [ABWH+17c, ABWH+17a, ABWH+17b] studied EPPA, Ramsey expan-
sions and (local) SIR’s for these classes (see also [Kon18, EHKN20, Kon20]). In
particular, if AδK1,K2,C1,C2

is primitive (i.e. it is neither antipodal nor bipartite)
and δ is finite, it can be shown using another result of Hubička, Kompatscher
and Konečný [HKK18] that these (local) stationary independence relations are 1-
supported and can be viewed as M-shortest path independence relations [Kon19]
with a finite archimedean M, which means that Theorem 1.3 is a direct consequence
of Theorem 1.2.

5. Conclusion

We conclude with two questions and a conjecture. The first question is a partic-
ular instance of the general question whether 1-supportedness is necessary.

Question 5.1. Consider the structure Mk from Example 3, that is, the Fräıssé limit
of all finite [n]k-metric spaces (which are in fact semigroup-valued metric spaces in
the sense of Section 4.1). Is the automorphism group of Mk simple? (For k ≥ 2
and n large enough – if, for example, n = 3, it is in fact a free amalgamation class,
as (2, . . . , 2) is a free relation.)

The obvious next step is to generalise our results to countable archimedean
semigroups which do not have to contain a maximum element, thereby obtaining
and analogue of Tent and Ziegler’s result on the Urysohn space [TZ13b]. We believe
that such a generalisation is quite straightforward. However, there are structures
in infinite language which do not even admit a SIR, although they are also very
much metric-like. One example is the sharp Urysohn space:
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Question 5.2. Let U# be the Fräıssé limit of the class of all finite complete Q+-
edge-labelled graphs (here Q+ is the set of all positive rational numbers) which
contain no triangles a, b, c with d(a, b) ≥ d(a, c) + d(b, c) (that is, the triangle in-
equality is sharp). Is the automorphism group of U# simple modulo bounded auto-
morphisms?

Note that if we consider N instead of Q+, the resulting structure can be under-
stood as an M-metric space (putting a⊕ b = a+ b− 1 and a � b if a ≤ b).

Remark 5.3. The sharp Urysohn space is a very peculiar structure, because al-
though it does not admit a SIR, it has EPPA, APA and it is Ramsey when equipped
with a (free) linear order.

The following conjecture and question are closely related to a conjecture from [Kon19].

Conjecture 5.4. Every countable homogeneous complete L-edge-labelled graph with
2 ≤ |L| <∞, primitive automorphism group and trivial algebraic closure admits a
metric-like SIR.

Question 5.5. Assume that F is a transitive countable structure with a metric-like
SIR |̂ such that tp(ab) = tp(ba) for every a, b ∈ F. Can one define a partially
ordered commutative semigroup M on the 2-types of F such that |̂ is the M-
shortest path independence relation? If the answer is yes, is it true that for every
a 6= b 6= c ∈ F it holds that tp(ab) � tp(ac)⊕ tp(bc)?

The obvious special cases of Question 5.5 are for finitely many 2-types, 1-
supported |̂ , bounded |̂ , and their combinations. It is not true that the condi-
tions of Question 5.5 imply that the structure at hand is an M-metric space in the
sense of [Kon19, HKN18]. For example, suppose that F is the Fräıssé limit of the
class of all [n]1-metric spaces which also contain a ternary relation R such that if
(a, b, c) ∈ R, then d(a, b) = d(b, c) = d(c, a) = 1. The standard ([n],+,≤)-shortest
path independence relation is the desired SIR on F.
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pansions and EPPA for S-metric spaces. To appear, 2020.
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[NVT09] Lionel Nguyen Van Thé. Ramsey degrees of finite ultrametric spaces, ultramet-

ric Urysohn spaces and dynamics of their isometry groups. European Journal of
Combinatorics, 30(4):934–945, 2009.
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