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0 Introduction

Cherlin, Harrington and Lachlan’s paper on ω0-categorical, ω0-stable theories ([CHL]) was the
starting point of geometrical stability theory. The progress made since then allows us better to
understand what they did in modern terms (see [PI]) and also to push the description of totally
categorical theories further, (see [HR1, AZ1, AZ2]).

The first two sections of what follows give an exposition of the results of [CHL]. Then I explain
how a totally categorical theory can be decomposed by a sequence of covers and in the last section
I discuss the problem how covers can look like.

I thank the parisian stabilists for their invation to lecture on these matters, and also for their
help during the talks.

1 Fundamental Properties

Let T be a totally categorical theory (i.e. T is a complete countable theory, without finite models
which is categorical in all infinite cardinalities).

Since T is ω1-categorical we know that

a) T has finite Morley-rank, which coincides with the Lascar rank U .

b) T is unidimensional : All non-algebraic types are non-orthogonal.

The main result of [CHL] is that

c) T is locally modular.

A pregeometry X (i.e. a matroid) is modular if two subspaces are always independent over their
intersection. X is called locally modular if two subspaces are independent over their intersection
provided this intersection has positive dimension. A pregeometry is a geometry if the closure of
the empty set is empty and the one-dimensional subspaces are singletons. The one-dimensional
subspaces of X form a geometry in a natural way, the associated geometry X̃. X is (locally)
modular iff X̃ is.

The realization set of a regular type p ∈ S(A) carries the structure of a pregeometry, where

“c is in the closure of C” is interpreted as “c
/|̂
A

C ”, which for U -rank 1 types is the same as

“c ∈ aclA(C)”. A theory T is locally modular if all stationary types of U-rank 1 are locally
modular i.e. have locally modular geometry.
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By a) every stationary p ∈ S(A) of U-rank 1 is strongly minimal. Whence p contains an A-
definable strongly minimal set D. “aclA” defines on D its pregeometry over A which is the same
as the pregeometry of p except that D may contain elements from acl(A).

If A is finite the closure of the empty set in D is finite and the one-dimensional subspaces of
D form a uniformly definable family of finite sets. Whence the associated geometry of D is the
pregeometry over A of a certain strongly minimal set DA, which lives in Ceq. DA is called the
associated strictly minimal set over A. It has the same geometry as p. The local modularity of T
(at least for types defined over finite sets) follows therefore from

Theorem 1.1 ([CHL]) Let D be a strictly minimal set over ∅. Then the structure of D is one
of the following:

a) trivial

b) a projective space over a finite field

c) an affine space over a finite field

Some explanations:

The induced structure on a 0-definable set P tells us what the 0-definable relations on P are.
If we are in a countable ωo-categorical model M the induced structure on P is given by the group
of all permutations of P which are induced by automorphisms of M : The 0-definable relations on
P are the relations which are invariant under all automorphisms of M . If A is a set of parameters
and P is A-definable one can also speak about the induced structure of P over A, giving the
A-definable relations on P .

Let X be an infinite-dimensional projective (or affine) space over the field Fpn . Let G be a
group of collineations which contains all linear collineations of X. (There are exactly φ(n) possible
choices for G). X with the structure given by G is what we mean by a projective (affine) space
over Fpn . The acl-closed subsets of X are just the subspaces of X. All these structures (and the
trivial structure) are totally categorical and strictly minimal. The projective spaces are (as the
trivial structure) modular, the affine spaces locally modular.

Many properties of totally categorical theories are shared by all locally modular theories of
finite U -Rank - the LMFR-theories. See [B].

The following Lemma is the main use of modularity. If A is a subset of D it specializes just
to the definition.

Lemma 1.2 Let T be stable and D be a 0-definable strongly minimal set which is modular over ∅.
Let B be a subset of D and A be a set of parameters. Then B and A are independent over
acl(B) ∩ acl(A) ∩D.

Proof:
We can assume that acl(B) ∩ acl(A) ∩D is in the definable closure of the empty set. Using the
following easy fact

Lemma Let T be a stable theory. Then for all sets A and elements b there is a set C of

realizations of tp(b/A) such that b
|̂
C

A and b
|̂
A

C.

we obtain a subset C of D such that

B
|̂
C

A(1)

B
|̂
A

C .(2)
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If B and A are dependent over ∅ then by (1) also B and C are dependent over ∅. Whence by
modularity there must be an element d ∈ D which is algebraic over B and over C but not algebraic
over ∅. It follows from (2) that d is algebraic over A, whence d belongs to acl(B) ∩ acl(A) ∩D, a
contradiction.2

Lemma 1.2 answers the following question which arises from theorem 1.1. Let D be an A-
definable strongly minimal modular set and B a finite set extending A. The two geometries of D
over A and B are given by theorem 1.1, where we added the elements of A and B respectively.
What is the relationship between these two geometries ? By 1.2 the answer is that the pregeometry
of D over B (also for infinite B) is the pregeometry of D over A relativized by acl(B) ∩D. We
conclude that also the U-rank 1 types which are defined over infinite sets are locally modular.

Corollary 1.3 (see [C.L] for LMFR-theories)
All stationary types p ∈ S(A) of U-rank 1 which are not modular are sound i.e. if q ∈ S(B) is a
non-forking modular extension of p then p is realized in acl(B).

Proof:
We can assume that A is empty. Let D be a strictly minimal set over ∅ which is not modular.
By theorem 1.1 D is an affine geometry. Let D’ be the set of the parallel-classes of D, which
is strictly minimal and modular over ∅. D ∪ D’ is a set of Morleyrank 1 (and degree 2) which
has a modular geometry over ∅ and we can apply 1.2 to it (!). Now assume that D and acl(B)
have empty intersection. Then the pregeometry of D over B is the pregeometry of D relativized
by acl(B) ∩D’. Since an affine geometry relativized by a set of parallel-classes remains affine D
remains be non-modular over B. 2

A stable theory is 1-based if the canonical base of every strong type st(A/B) is contained in

acl(A), which is equivalent to A
|̂

acl(A)∩acl(B)
B. Thus 1-basedness means that A and B can only

be dependent over C for the simple reason that there is an element which is algebraic over A and
algebraic over B but not algebraic over C.

Corollary 1.4 T is 1-based

Proof:
Assume that a and b are dependent over C. We want to find an element c algebraic over a and
b but not over C. In a superstable theory st(a/C) and st(b/C) are domination equivalent to
products of regular types pi. This means that one can find an extension M of C, independent
from ab over C, and for a an M -independent tuple a of realizations of regular types over M which
is domination equivalent to a over M and similarly for b a tuple b. Since a and b are dependent
over M also a and b are dependent over M . We can assume that all the occuring regular types
are equal or orthogonal. Whence there are subsequences a′ and b′ of a and b whose elements all
have the same type p and are still dependent over M . Since a and b have finite U -rank over C, we
can assume that p is of U -rank 1 (use [D.L]). p is the non-forking extension to M of a stationary
type q, which is defined over a small subset of M . If we assume M to be enough saturated q is
realized in M . Whence the local modularity of q implies that p is modular. Now by 1.2 we find a
c′ realizing p which is algebraic over Ma′ and over Mb′. c′ is dominated by a and by b over M ,
whence algebraic over Ma and over Mb. Let E be the canonical base of stp(Mc′/Cab).

Since Mc′ |̂
Ca

b, Mc′ |̂
Ca

b and Mc′ /|̂
C

a , E is a subset of acl(Ca), acl(Cb) but not of acl(C) .

Now choose c as an element from E which is not algebraic over C. 2

Corollary 1.5 (“Coordinatization”)
If a is non-algebraic over A there is a b which has U -rank 1 over A and is algebraic over Aa

Proof:
If n = U(a/A) = 1 there is nothing to show. If n > 1 we choose a c such that U(a/Ac) = n − 1.
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Since a and c are dependent over A 1-basedness gives a b′ which is algebraic over Aa and over Ac
but not over A. a is not algebraic over Ac and therefore not algebraic over Ab′. The equation

U(a/A) = U(ab′/A) = U(a/Ab′) + U(b′/A)

shows U(b′/A) < n. By induction we find b in the algebraic closure of Ab′ which has U -rank 1
over A. 2

Lemma 1.6 For every a there is a sequence a1, ...an = a such that all ai are in acl(a) and all
types tp(ai+1/a1...ai) are algebraic or strictly minimal.

Proof:
If a is algebraic over ∅ we set a1 = a. Otherwise 1.5 gives us an a2 in acl(a) which has U -rank 1
over ∅. By the arguments preceding 1.1 there is an a1 such that tp(a1/∅) is strictly minimal and
a2 is algebraic over a1. Since U(a/a1a2) < U(a/∅) we can use induction to conclude that there is
a decomposition a3, ..an = a of a over the parameters a1a2. 2

Note that n can be bounded by two times the Morleyrank of a over ∅.
Example 1 Let p be a prime, n a natural number and M be the totally categorical abelian
group

⊕
ω (Z/pnZ). For every element a of order pm < pn

Da = {b∗ | pb = a, b 6= 0},

where b∗ = b + Zpmb, is strictly minimal over a. A decomposing sequence of a is

(pm−1a)∗, pm−1a, . . . a∗, a.

Note that pia is algebraic over (pia)∗ and that (pi−1a)∗ belongs to Dpia.

Lemma 1.7 Let D1 and D2 be 0-definable strictly minimal modular sets. Then there is a unique
0-definable bijection between them.

Proof:
If f is a definable bijection between D1 and D2, then f(b1) must be the (unique) element b2 of
D2 which is algebraic over b1. Whence f is unique. On the other hand it is enough to find two
elements bi of Di (i=1,2) which are interalgebraic. Then the formula f(x, y) = tp(b1, b2) defines
the desired bijection:

Since D1 and D2 are not orthogonal there are subsets Bi of Di (i=1,2) which are dependent
over ∅. Since D2 is modular, there is an element b2 of acl(B1) ∩ acl(B2) ∩ D2 which is not
algebraic over ∅. Since B1 and b2 are dependent, and D1 is modular, there is an element b1 of
acl(B1) ∩ acl(b2) ∩D1 which is not algebraic over ∅. Now b1 and b2 are interalgebraic. 2

Corollary 1.8 There is a strictly minimal modular set D over ∅.

Proof:
By 1.5 there is a 0-definable set D of Morleyrank 1. We can assume that D does not contain
elements of acl(∅). The finite equivalence relation theorem gives a 0-definable equivalence relation
E which partitions D into finitely many strongly minimal sets D1, ...Dn. The Di have over ∅
the same pregeometry as over acl(∅) over which set they are defined. Let D’i be the strictly
minimal set of parallel classes of Di and E the 0-definable disjoint union of the D’i. By 1.7 there
are unique acl(∅)-definable bijections between the D’i. This shows that in the pregeometry of E
every 1-dimensional subspace meets each of the D’i in exactly one point. The set of 1-dimensional
subspaces of E is therefore 0-definable and strictly minimal. 2
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Corollary 1.9 If one strictly minimal set over some parameter set has trivial geometry then all
strictly minimal sets over arbitrary parameter sets have trivial geometry.

Proof:
If D is strongly minimal over a finite set A it is of one of the types a), b) or c) of 1.1. If B
extends A then by 1.2 DB has the relativized geometry (where in the affine case one has not only
to relativized by a subset but also by a set of parallel classes, see the proof of 1.3.) This shows
that DB is of the same type, except that an affine geometry could have become projective. Now
the corollary follows from 1.7. 2

2 Envelopes

In this section we fix a totally categorical theory T and a strictly minimal modular set D over ∅
as given by 1.8.

Definition 1 Let B be a set of parameters. A set E is called an envelope of B if E
|̂
B

D and E

is maximal with this property.

If P is a B-definable class in a stable theory then A
|̂
B

P is equivalent to tp(A/B) being almost

orthogonal to every type tp(c/B) of a tuple c from P. If P is strongly minimal we have to check
this only for tuples of B-independent elements of P. If furthermore P is modular over B 1.2 tells us

that it is enough to test single elements of P i.e. A
|̂
B

P is equivalent to acl(AB)∩P = acl(B)∩P.

Example 2 In the group M of example 1 the envelopes are -up to an automorphism- the
subgroups

⊕
i<m (Z/pnZ).

The following Lemma shows that envelopes are in our situation what for non-totally transcen-
dental unidimensional theories was called “maximal non-modular models” in [PR]. But of course
envelopes are not models in general.

Lemma 2.1

1. Let A be algebraically closed over B. Then A
|̂
B

D iff no modular type of U -rank 1 over any

subset of A containing B is realized in A

2. E is an envelope of B iff

(a) E
|̂
B

D

(b) E is algebraically closed over B

(c) All non-modular stationary types of rank 1 over subsets of E are realized in E. It is
enough to know this for types over E i.e. that all U -rank 1 types over E are modular.

Proof:
1: Assume A

|̂
B

D , let C be a subset of A which contains B and let p ∈ S(C) be a modular

stationary type of U -rank 1.The proof of 1.7 shows that one (and therefore every) realization a

of p is interalgebraic over C with some element d of D. a
/|̂
C

d implies then Ca
/|̂
B

d . Whence
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a cannot lie in A. For the converse assume that A
/|̂
B

D . Since A is algebraically closed in Ceq

there is an element a of A with a
/|̂
B

D . By 1.6 there is a seqence a1, ...an = a of elements of

A such that the types tp(ai+1/a1...ai) have at most rank 1. For some i we must have ai+1
/|̂
C

D

where C = Ba1...ai. Since D is modular over C, ai+1 is interalgebraic over C with an element of
D. But then the geometries of p = tp(ai+1/acl(C)) and D must be the same (see 1.7) and p ist
modular.
2: Assume first that E is an envelope of B. (a) and (b) are clearly true. So let C be a subset of
E and p a non-modular stationary type of rank 1 over C. Let a be a realization of the nonforking

extension p|E of p to E. By maximality of E we have a
/|̂
E

D. The proof of 1 shows that p|E must

be modular. By 1.3 p is realized in E. This shows (c). For the converse assume (a) and (b) are
true but that E is not maximal with (a). Then there is an a which is not algebraic over E such

that a
|̂
E

D. By 1.5 we can assume that p = tp(a/E) has rank 1. By 1 p is not modular. Whence

(c) is false. 2

Corollary 2.2 If D is trivial T is almost strongly minimal i.e. C is the algebraic closure of a
strongly minimal set.

Proof:
Let a be any element and B = acl(a) ∩D. We show that a ∈ acl(B). By 1.2 aB

|̂
B

D. If a is not

algebraic over B we find a subset C of acl(a) which contains B such that tp(a/C) is stationary
and of U-rank 1. Then part 1 of the lemma shows that tp(a/C) is not modular. But tp(a/C) is
trivial by 1.9. A contradiction. 2.

Corollary 2.3 Envelopes of finite sets are finite in every sort of Ceq.

Proof:
Let B be finite and E be an envelope of B. We show first that

A = {e ∈ E|U(e/B) ≤ 1}

is finite: Since in every sort there are only finitely many types over acl(B) we can fix a type
p ∈ S(acl(B)) of rank at most 1 and show that p has only finitely many realizations in E. If p
is algebraic this is clear. If p has rank 1 it is locally modular. If e ∈ E is a realization of p the
nonforking extension p|acl(B)e of p to acl(B)e is modular. By 2.1 it cannot be realized in E . We
conclude that all other realizations of p in E must be algebraic over Be. Whence there are only
finitely many.

Every element e of E of a fixed sort has a decomposition e1, ...en = e as in 1.6 for a fixed
n where all the ei belong to E. We show that E contains only finitely many elements in this
sort: The case n = 1 is already clear. If we add the elements of A to the language E remains
an envelope of B and all the e’s have a decomposition of length n − 1. Now we are finished by
induction. 2

The proof shows also that the envelope of an infinite set B has the same cardinality as B.

Corollary 2.4 Any two envelopes of B are isomorphic over B.

Proof:
Let E and F be two envelopes of B. Let f : C → F be a maximal elementary map over B from
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a subset C of E to F . Clearly C is algebraically closed over B. We want to show that C = E.
If not, there is an element e in E \ C. By 1.5 we can assume that p = tp(e/C) has rank 1. Now
by 2.1(1) p is not modular and by 2.1(2) f(p) is realized in F . This gives an extension of f to
C ∪ {e}, a contradiction. Whence f is defined on E. Since E is maximal f is surjectiv. 2

Definition 2 A set E is called strongly homogeneous if every isomorphism between two subsets
of E can be extended to an automorphism of E.

Corollary 2.5 An envelope of a finite set is strongly homogeneous.

Proof:
Let E be an envelope of a finite set. Then E envelopes the finite subspace U = E∩D of D, whose
dimension we denote by n. Let f be an isomorphism between the subsets A1 and A2 which we
can assume to be algebraically closed. Let m be the dimension of the two subspaces Vi = Ai ∩D
(i = 1, 2) of U . First extend f to a partial map g defined on E. U and g(U) both have dimension
n−m over V2. The remark after 1.2 shows that also in the geometry of D over A2 U and g(U) are
subspaces of dimension n−m . Whence there is an elementary map which fixes the elements of
A2 and maps g(U) onto U . Composing g with this map shows that we can assume that g(U) = U .

E is an envelope of both sets U ∪ Ai (i = 1, 2). Therefore g(E) is an envelope of U ∪ A2 =
g(U ∪A1). By 2.4 there is an elementary map which fixes the elements of U ∪A2 and maps g(E)
onto E. If we compose g with this map we obtain the desired extension of f to an automorphism
of E. 2

Theorem 2.6 Every finite set of axioms of T has a finite model.

Proof:
We can assume that the language of T is relational. Let B be a finite set which realizes all n-
types over ∅. Let E be an envelope of B. Since E is strongly homogeneous every 1-type over
every (n − 1)-element subset of E is realized in E. Now an induction as in the proof of Tarski’s
criterion shows that for all k ≤ n , all formulas φ(x1, ...xn−k) of quantifier depth at most k and
all e1, ...en−k ∈ E

E |= φ(e1, ...en−k) ⇐⇒ C |= φ(e1, ...en−k)

. Whence all true axioms of quantifier depth at most n are true in E. 2

3 Decomposition into covers

In this section let T be an arbitrary complete theory.
Let E and F be A-definable classes. We assume E to be non-empty and F to be infinite.

Definition 1 E is F-internal if there is a set B such that E ⊂ dcl(F ∪B).

Example 3 Let G be a group acting transitively on a class H in a definable way. Then H is
G-internal.

Lemma 3.1 E is F-internal iff for some n there is a definable surjection π : Fn → E.

Proof:
If π is B-definable then each π(f) is definable over Bf . If conversely E ⊂ dcl(F ∪ B), for every
e ∈ E there is a B-definable partial function πe and elements f of F such that e = πe(f). By
compactness we find the πe among a finite family π0, ...πm of k-place functions and if we enlarge
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B to include A we can assume that they map into E. Choose an element e0 from E. We define
now the n = m + 1 + k-place function π defined on F as follows: If f0, ...fm, f are given let i be
maximal such that f0 = fi. If πi(f) = e is defined set π(f) = e. Otherwise set π(f) = e0. π is
surjectiv and Be0-definable. 2

Remark 3.2 Let Di (i = 1, 2) be two strictly minimal sets over parameter sets Ai in a totally
categorical theory. If A1 ⊂ A2 then D2 is D1-internal.

Proof:
Since there is a A2-definable surjection from D1 onto (D1)A2 we can assume that A1 = A2.
Furthermore there is an obvious definable surjection from D1 onto D’1, the strictly minimal set
of parallel classes of D1. We may therefore assume that D1 is modular. If D2 is also modular the
two sets are isomorphic (1.7). Otherwise D2 is an affine space and D1 is - up to isomorphy - the
set of parallel classes of D2. We fix a line B in D2. Then every point c in D2 outside of B can
be defined from to points a, b ∈ B and the two directions from c to a and from c to b. Whence
D2 ⊂ dcl(D1 ∪B). 2

A type p ∈ S(A) is F-internal if p(C) ⊂ dcl(F ∪ B) for some B, which is by compactness
equivalent to the existence of a formula E(x) in p which is F-internal.

Lemma 3.3 p is F-internal iff there is a realization e of p and an element b such that e
|̂
A

b and

e ∈ dcl(Fb).

Proof:
If p is F-internal there is an E(x) ∈ p and a definable surjection π : Fn → E. Choose a parameter
b over which π is defined and a realization e of p which is independent from b over A. Then

e ∈ dcl(Fb). If conversely e and b with e |= p, e
|̂
A

b and e ∈ dcl(Fb) are given take for B the

elements of a long Morley sequence (bi)i∈I of st(b/A). If e′ is any realization of st(e/A) some bi is
independent from e′ over A. Then also e′ ∈ dcl(Fbi). Whence st(e/A) ⊂ dcl(F ∪ B) and st(e/A)
is F-internal. Then also all the other extensions of p to acl(A) are F-internal, which implies that
p is F-internal. 2

We call a tuple e of elements of E a fundamental solution if E ⊂ dcl(F ∪Ae).

Lemma 3.4 If T is stable and E is F-internal there is a fundamental solution e. If T is totally
transcendental tp(e/F ∪A) is isolated.

Proof:
There is a definable surjection π : Fn → E. By stability π is definable from parameters in A∪F∪E.
The parameters used from E form a fundamental solution.
If π : Fn → E is an Ae-definable surjection we can write π(x) = π(x, e) for an A-definable partial
function π(x, y). That π is a surjection Fn → E is an elementary property of e which can be
expressed by a formula with parameters in A. If T is totally transcendental we can therefore find
an e which is isolated over F ∪A. 2

Let G be a group of permutations of the definable class P. We call G A-definable if there is
an isomorphism of G with an A-definable group G such that the induced action of G on P is
A-definable. If G is a subclass of Q we say that G lives on Q. For example a definable group
which acts regularly on P lives on Peq.

If P is A-definable and G is an A-definable regular permutation group on P then the opposite
group Gopp of all G-invariant permutations of P is again an A-definable permutation group.

8



Theorem 3.5 (Groupe de liaison) Let E and F be 0-definable classes. Assume that E is
F-internal and that h0 = e0 is a fundamental solution which is isolated over F. Let H be the
F-definable class of all fundamental solutions which have the same type over F as h0. Then

1. The natural map Aut(E/F) → Aut(H/F) is an isomorphism.

2. Aut(H/F) acts regularly on H and is F-definable. (This was called the “binding group” in
[PO].)

3. Aut(H/F)opp lives on Feq.

Proof:
The 0-definable map π(x, y) in the proof of 3.4 maps Fn ×H to E. π(x, h) is surjective for every
h ∈ H.
(1): The map is surjective since by stability every automorphism of H over F extends to an
automorphism of the monster model C over F. Fix an element h1 ∈ H. Then

α(π(f, h1)) = π(f, α(h1))

shows that every α ∈ Aut(E/F) is determined by its value on h1. Whence our map ist also
injective. The formula shows also that Aut(E/F) is F-definable: Any pair (h1, h2) of elements of
H defines an α by

α(π(f, h1)) = π(f, h2),

which is in Aut(E/F) since h1 can be mapped to h2 by an element of Aut(E/F), which must be
α. If H is defined over F0 then also Aut(E/F) is defined over F0 .
(2): Is clear by the proof of (1).
(3): Let m be the length of h0. The m-th power of π gives a F0-definable map σ : Fnm ×H → Em.
σ(x, h) is surjective for every h ∈ H. Since H is a complete type over F the set

S = {x ∈ Fnm | σ(x, h) ∈ H}

does not depend on h. We have therefore an F0-definable map

τ : S×H → H.

τ(x, h) and (by completeness) τ(s, y) are surjective for all h ∈ H and s ∈ S. Now for any pair
(s, t) ∈ S

Φst(τ(h, s)) = τ(h, t) (h ∈ H)

defines a map Φst : H → H which commutes with every β ∈ Aut(H/F). Since Φts is invers
to Φst it belongs to Aut(H/F)opp. Since (τ(h, s), τ(h, t)) can be any pair in H every element of
Aut(H/F)opp has the form Φst. This shows that Aut(H/F)opp lives on Seq. 2

Definition 2 Let P ⊂ Q be 0-definable classes. We call Q a cover of P if the following entities
exist 0-definably:

1. A partition of Q \P into a family (Ha)a∈P

2. A family (Ga)a∈P of groups living on Peq (the structure groups)

3. A regular action of each Ga on Ha

If all the (Ha)a∈P live on Deq for a 0-definable subclass D of P we call Q a D-cover.
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Theorem 3.6 ([HR2]) Let T be ω1-categorical and D a 0-definable strongly minimal set. Then
there is a sequence

D = P0 ⊂ ... ⊂ Pn

of 0-definable classes such that each Pi+1 is a D-cover of Pi and the monster model C is in the
definable closure of Pn. The length n can be bounded by the Morleyrank of C.

The groups we will find are opposite binding groups as constructed in 3.5. We have therefore to
show that there are enough D-internal sets. This is done by the following lemma.

Lemma 3.7 Let T and D be as in 3.6. Then for every a of Morleyrank n over ∅ there is a
sequence a0, ...an = a such that all ai are in dcl(a) and all types tp(ai+1/a1...ai) are D-internal.

Proof:
If n = 0 then tp(a/∅) is obviously D-internal.
Otherwise tp(a/∅) is not orthogonal to D and there must be a b and an element d of D such that
a is independent from b over ∅ but not independent from bd. Choose an element c in the canonical
base of q = st(bd/a) such that a /|̂ c. Since q is definable over any infinite Morley sequence of q
c is definable from an a-independent sequence b1d1, ...bmdm of realizations of q. We have a |̂ bi

for all i. This implies that a |̂ b1...bm and - because c ∈ acl(a) - c |̂ b1...bm. By 3.3 we know
that tp(c/∅) is D-internal. If c1, ...ck are the conjugates of c over a the types tp(ci/∅) are also
D-internal. We set a1 = {c1, ...ck}. Then tp(a1/∅) is D-internal and a1 ∈ dcl(a).
Since a is dependent from a1 the Morleyrank of tp(a/a1) is smaller that n. After adding the
constant a1 to the language we can use induction to obtain the desired sequence. 2

Proof of 3.6:
We express the content of 3.7 by saying that any a of rank n is n-analysable. It is easy to see
from the definition that “tp(a/b) is D-internal” is a

∧
-definable property of ab i.e. definable by a

conjunction of a set of formulas. Whence also “tp(a/∅) is n-analysable” is
∧

-definable.

Let R be a 0-definable class of elements which are all n-analysable. We show by induction on
n that R is in the definable closure of a “covering” sequence of length n. By the above we can
apply compactness to

|= ∀a ∈ R ∃b ((tp(a/b) D− internal) ∧ (tp(b/∅) (n− 1)− analysable))

to obtain a 0-definable class Q with

For every element a of R there is a b in Q for which tp(a/b) is D-internal.

All elements of Q are (n− 1)-analysable.

Using induction we find a covering sequence D = P0 ⊂ . . . ⊂ Pn−1 such that Q is in dcl(Pn−1).
If tp(a/b) is D-internal and b ∈ dcl(c) then also tp(a/c) is D-internal. Whence for all a ∈ R there
is a c ∈ Pn−1 for which tp(a/c) is D-internal. We have to find a cover Pn of Pn−1 such that
R ⊂ dcl(Pn).

By 3.1 every a ∈ R belongs to a D-internal class E which is definable over a subset A of Pn−1.
Let H be the class of fundamental solutions defined in 3.5 and G = Aut(H/D ∪A)opp. Then for
some parameter c ∈ Pn−1:

H,G and the - regular - action of G on H are definable from c.

a ∈ dcl(Hc).

We can assume that H = H′
c and G = G′

c for 0-definable families
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(H′
b
) , (G′

b
) (b ∈ Pn−1 )

of regular acting groups. The families still depend on a. But by compactness there is a finite set
of families

(Hi
b
) , (Gi

b
) (b ∈ Pn−1 , i = 1, . . .m)

which can be used for every a ∈ R.

Finally define

Hc = H1
c × . . .×Hm

c

Gc = G1
c × . . .×Gm

c (c ∈ Pn−1).

with the obvious action. We can assume that the Hc are pairwise disjoint and disjoint to Pn−1

and that still R ⊂ dcl(Pn−1 ∪
⋃

c∈Pn−1
Hc). Set

Pn = (Pn−1 ∪
⋃

c∈Pn−1
Hc) .

This proves 3.6. 2

In totally categorical theories we have a better result. Also the theory of internality is not
used at all.

Theorem 3.8 If T is totally categorical and D is a projective space over the field Fq we can find
a covering sequence

D = P0 ⊂ ... ⊂ Pm

such that the monster model C is in the definable closure of Pm and each Pi+1 is a D-cover of Pi

with structure groups Ga which are either finite or Fq-vectorspaces (and with no other structure
over a).

Proof:
By a modification of the proof of 3.6. Instead of 3.7 we use 1.6: Also by ω-categoricity there is
no need to deal with a finite family of groups at the same time and use the direct product. The
price we pay of course is that we cannot compute a bound for the length of the covering sequence.
Furthermore no use is made of internality and the groupe de liason.

Thus the only thing we have to prove is the following:
Suppose that c is a tuple from Pn−1 and that tp(a/c) is algebraic or strictly minimal. Then there
is a two-step cover Pn+1 of Pn−1 of the desired kind such that a is definable over Pn+1. For
this it is enough to find a group G which lives on Deq and acts regularly on a set H, everything
definable over Pn, such that a is definable over Pn ∪H.

If a is algebraic over c only one cover is needed: set Pn = Pn−1. Let b1 . . . bm be the sequence
of conjugates of a over c and define G = Sym(1 . . . m) and H = {bσ(1) . . . bσ(m)|σ ∈ G} with the
obvious action.

If tp(a/c) is strictly minimal, it is modular or affine. If it is modular it is by 1.7 algebraic
over Dc and we are reduced to the first case. If it is affine the realization set D1 of tp(a/c) is an
affine geometry with no other structure over c. The corresponding Fq-vectorspace V which acts
regularly on D1 is definable from c. Let D2 = Dc be the strictly minimal set over c, associated
to D. Then by 1.7 there is a c-definable bijection between D2 and the projective space of 1-
dimensional subspaces of V . Whence V is algebraic over Pn−1 and we can build a cover Pn with
finite structure groups (a finite cover) such that all elements of V are definable over Pn i.e. V

11



lives in Peq
n . If we now set H = D1 and G = V we are done, besides that G is only to be known

to live on Peq
n and we want it to live on Deq.

But this is dealt with by finding a Pn-definable injection π : V → D3
2. We choose three

independent elements v1, v2, v3 from V and define

π(v) = (Fq(v + v1),Fq(v + v2),Fq(v + v3)).

Of course the copy of V living on Deq is now defined using the parameters cv1v2v3. 2

4 The structure of covers

Let M be an arbitrary structure and let a 0-definable family of groups (Gb)b∈M be given. A cover
of M with structure groups (Gb) is a two-sorted structure N = (M, H; R1, R2, . . .) in which H is
0-definably partitioned into sets (Hb)b∈M on which the Gb act regularly in a 0-definable way. Also
we want N not to add new structure to M .

This means that

1. every in N 0-definable relation on M is 0-definable in M

2. every in N definable relation on M is definable in M

The second clause means that M is stably embedded in N in the sense of the next definition. Only
by this condition it is that a cover of a totally categorical model is again totally categorical (see
4.4).

Definition 1 Let T be arbitrary and P be a 0-definable class. P is called stably embedded if every
definable relation on P is definable with parameters in P . A 0-definable set P in a structure M
is called stably embedded with finite support if all types tp(a/P ) of elements of M over P are
definable over a finite subset of P .

Remark 4.1 Pis stably embedded iff all types over Pare definable over P. Let B be a subset of
P. Then tp(a/P) is definable over B iff tp(a/B) ` tp(a/P) iff tp(b/B) ` tp(b/Ba) for all b ∈ P.

If T is stable all P are stably embedded. If in some model M P is stably embedded with finite
support then P is stably embedded. If T is ω-stable then all P are stably embedded with finite
support. The following theorem was explained to me by Hrushovski and is also contained in [HP]

Theorem 4.2 Let T be a countable complete theory and P be a 0-definable predicate.

1. Let M be an uncountable saturated model. Then P is stably embedded iff every automorphism
of P extends to an automorphism of M .

2. Let M be a countable saturated model. Then P is stably embedded with finite support iff
every automorphism of P extends to an automorphism of M .

Proof:
(1): Assume first that P is stably embedded and that α is an automorphism of P which is already
extended to an elementary map β : (P ∪ A) → M for a subset A of small cardinality. We want
to extend β to an arbitrary element a of M . Let p = tp(a/P ∪A). By 4.1 there is a small subset
B of P with q = tp(a/B ∪ A) ` p. Then also β(q) ` β(p). Since we can realize β(q) we can also
realize β(p) in M and extend β.
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For the converse assume that Q is a definable subset of P . The structure (P, Q) - P with its
induced structure and with the predicate Q- is saturated. In Aut(M) Q has at most |M |-many
conjugates. If one can extend every automorphism of P to an automorphism of M Q has also at
most |M |-many conjugates in Aut(P ). Kueker’s theorem implies now that Q is definable in P .

(2):Same as (1). But one needs a generalized Kueker theorem: If (P, Qi)i∈I is a saturated struc-
ture such that (Qi)i∈I hat at most |M |-many conjugates in Aut(P ) then there is a finite set of
parameters over which all the Qi are definable in P . 2

Remark 4.3 If P is countable and ω-categorical one has not to assume that (P,Q) is saturated
for Kueker’s theorem to be true. For the ”if”-direction of (2) one has therefore not to assume that
M is saturated if P is ω-categorical.

Lemma 4.4 Let N = (M, H) be a two-sorted structure where in a 0-definable way H is partitioned
into a family of sets Hb (b ∈ M) on which groups Gb living in M act regularly.

1. Assume that M is stably embedded in N . If then M (with its induced structure) is ω-stable
or ω1−categorical then also N is ω-stable or ω1-categorical respectively.

2. Assume that M is stably embedded in N with finite support. Then N is ω-categorical if M
is.

Proof:
(We write the b as 1-tuples) (1): The Morleyrank of H is bounded if the ranks of the Hb are
uniformly bounded and the rank of the index set M is bounded. Because of the regular action
the Hb and the Gb have the same rank. But since M is stably embedded the (H, M)-Morleyrank
of definable subsets of M is the same as their M -Morleyrank. Thus if M has Morleyrank as a
structure of its own also H has Morleyrank.
Concerning ω1-categoricity we prove that Th(N) has no Vaughtian pairs if Th(M) has no Vaughtian
pairs. Suppose that Th(M) has no Vaughtian pairs and let N ≺ N ′ be a proper elementary ex-
tension and Q =

⋃
s∈S Qs , where Qs ⊂ Hs, a definable subset of H which does not increase in

(M ′,H ′). Since each Hb is in definable bijection with Gb M ′ is a proper extension of M . That Q
does not increase means that S does not increase and that all the Qs do not increase. Since S is
definable in M it must be finite. There are definable bijections of the Qs onto definable subsets of
Gs, which are by assumption definable in M . Whence with these sets the Qs also must be finite.
We conclude that Q is finite and that Th(N) has no Vaughtian pairs.
(2): We can assume that N is countable. Since Aut(M) has only finitely many orbits on Mn by
4.2 also Aut(N) has only finitely many orbits on Mn. To count the orbits of Aut(N) on Hn it
is therefore enough to count for any fixed sequence s = s0 . . . sm ∈ M the types of n-tuples from
Hs =

⋃
i≤m Hsi over s. We choose a representative bi from every Hsi . Then there is a b-definable

bijection of Hs onto the disjoint union Gs of the Gsi . Whence we can bound the number of types
of n-tuples from Hs over s by the number of types of n-tuples of elements of M over sb. Now let
tp(sb/M) be definable over the finite B ⊂ M . Then we have as many types of elements of M over
B as we have types over Bsb: Finitely many! 2

Corollary 4.5 Covers of totally categorical structures are totally categorical.

2

We fix now a countable totally categorical structure M and a 0-definable family of groups
(Gb)b∈M living in Meq. For notational simplicity we assume the b = b be 1-tupels.

All covers of M with structure groups (Gb) are (up to isomorphy) expansions of the principal
cover N0 = (M, H) where the only relations added to M are a map H → M to partition H into
sets Hb (b ∈ M) and a family of regular actions of the Gb on the Hb.
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Corollary 4.6 The covers of M correspond up to interdefinability to the closed subgroups of
Aut(N0) which induce Aut(M) on M .

Proof:
The automorphism groups of covers are closed subgroups of Aut(N0) which induce Aut(M) by
4.2. Since covers are ω-categorical they are uniquely determined (as an expansion of N0) by their
automorphism groups. If a closed subgroup G of Aut(N0) is given it is the automorphism group
of an expansion N of N0. If G induces Aut(M) by 4.2 M is stably embedded in N and N is a
cover of M . 2

We distinguish covers N by their kernel K = Aut(N/M), which is a closed subgroup of K0 =
Aut(N0/M) ∼= ∏

b∈M Gb. The last isomorphism is not natural if the Gb are not abelian. The
natural isomorphism is between K0 and

∏
b∈M (Gb)opp.

By [HHLS] countable totally categorical models M have the small index property: The open
subgroups of Aut(M) coincide with the subgroups of countable index. This is the main ingredient
of the proof of the following lemma:

Lemma 4.7 ([HP]) Let G be a subgroup of Aut(N0) which induces Aut(M). Then G is closed
iff the kernel K = G ∩ K0 is closed.

Proof:
Assume the kernel of Gto be closed. The small index properties implies that the restriction map
from G onto Aut(M) is open. Thus if O is an open neighbourhood of 1 in Aut(N0) then (O∩G)|M
is an open neighourhood of 1 in Aut(M). It follows that O′ = K0(O ∩ G) is open in Aut(N0).
Let h be an automorphism of N0 which does not belong to G . We want to show that h is not
in the closure of G . Since G contains an element which has the same restriction to M as h we
can divide by this element and assume that h belongs to K0. Now choose an open subgroup O of
Aut(N0) such that hO is disjoint from K . Then O′ ∩ hO is a neighourhood of h which is disjoint
from G. 2.

We assume from now on that all Gb are abelian. This is a harmless assumption by 3.8. Then
in Aut(N0) conjugation with h depends only on hK0. We obtain therefore a natural action of
Aut(M) on Aut(N0). The kernels of subgroups which project onto Aut(M) are obviously invariant
under this action.

Lemma 4.8 For every closed subgroup K of K0 which is invariant under the action of Aut(M)
there is a cover of M with kernel K .

Proof:
Choose a transversal t = (tb)b∈M , where tb ∈ Hb. Then every element of Hb has the form tbg for a
unique g ∈ Gb. We lift now every automorphism α of M to an automorphism α̃ of N0 by setting
α̃(tbg) = tα(b)α(g). Then the automorphism group of the desired cover is G = {hα̃ |h ∈ K, α ∈
Aut(M)}. 2

We call the covers constructed in the proof of 4.8 trivial extensions of K . They depend on the
choice of the transversal t, but they are all conjugated by an element of K0 i.e. their automorphism
groups are in Aut(N0) conjugated by an element of K0.

Theorem 4.9 Let K be a closed, Aut(M)-invariant subgroup of K0. Then there is is a nat-
ural bijection between the conjugacy classes of covers of M with structure groups (Gb)b∈M and
H1(Aut(M), K0/K). The trivial covers correspond to 0.

Proof:
Let N be a cover with kernel K .Choose a transversal t and define for every α ∈ Aut(M) an
element dα of K0 by α(t) = tdα, where α is any extension of α to N . Modulo K this defines a
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derivation d : Aut(M) → (K0/K) whose cohomology is independent of the choice of t and α. This
defines the desired bijection. More details and the computation of H1(Aut(M),K0/K) in some
special cases can be found in [AZ2]. 2

(revision 25-07-1991)
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5 Errata

• In the proof of 1.5 no induction is needed. The Lascar–equation yields U(b′/A) = 1 imme-
diately.

• Remark about 2.1: Define the coordinates of A to be the set AD = acl(A) ∩ D. Let B be

a subset of A. It is easy to see that A
|̂
B

D iff BD = AD. If A is algebraically closed this

is also equivalent to the non–existence of a modular Rank–1 type over acl(B) realized in A.
(Take the type of an element of AD over acl(B).

(December 20, 1999)
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