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In [5] E. Hrushovski proved the following theorem:

Theorem 0.1 (Hrushovski’s New Strongly Minimal Set). There is a strongly
minimal theory which is not locally modular but does not interpret an infinite
group.

This refuted a conjecture of B. Zilber that a strongly minimal theory must
either be locally modular or interpret an infinite field (see [7]). Hrushovski’s
method was extended and applied to many other questions, for example to the
fusion of two strongly minimal theories ([4]) or recently to the construction of
a bad field in [3].

There were also attempts to simplify Hrushovski’s original constructions.
For the fusion this was the content of [2]. I tried to give a short account of
the New Strongly Minimal Set in a tutorial at the Barcelona Logic Colloquium
2011. The present article is a slightly expanded version of that talk.

1 Strongly minimal theories
An infinite L-structure M is minimal if every definable subset of M is either
finite or cofinite. A complete L-theory T is strongly minimal if all its models
are minimal. There are three typical examples:

• Infinite sets without structure

• Infinite vector spaces over a finite field

• Algebraically closed fields

The algebraic closure acl(A) of a subset A of M is the union of all finite
A-definable subsets. In algebraically closed fields this coincides with the field-
theoretic algebraic closure. In minimal structures acl has a special property:

Lemma 1.1. In a minimal structure acl defines a pregeometry.
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A pregeometry (M,Cl) is a set M with an operator Cl : P(M) → P(M) such
that for all X,Y ⊂M and a, b ∈M

a) X ⊂ Cl(X) (Reflexivity)

b) X ⊂ Y ⇒ Cl(X) ⊂ Cl(Y ) (Monotonicity)

c) Cl(Cl(X)) = Cl(X) (Transitivity)

d) a ∈ Cl(Xb) \ Cl(X)⇒ b ∈ Cl(Xa) (Exchange)

e) Cl(X) is the union of all Cl(A), (Finite character)
where A ranges over all finite subsets of X.

An operator with a), b) and c) is called a closure operator. Note that e) implies
b).

Proof of 1.1. All properties except Exchange are true in general and do not
need the minimality of M . To prove the exchange property, assume a ∈ acl(Ab)
and b 6∈ acl(Aa). There is a formula φ(x, y) with parameters in A such that
φ(M, b) contains a and is finite, say with m elements. We can choose φ in such
a way that φ(M, b′) has at mostm elements for all b′. Since b is not algebraic over
Aa, φ(a,M) must be infinite. But M is minimal, so the complement ¬φ(a,M)
is finite, say with n elements. Assume that there are pairwise different elements
a0, . . . , am such that each ¬φ(ai,M) has at most n elements. Then for some
b′, φ(M, b′) contains all the ai, which contradicts the choice of φ. So there are
at most m many a′ such that ¬φ(a′,M) has n elements. This shows that a is
algebraic over A.

Let X be a subset of M . A basis of X is a subset X0 which generates X in
the sense that X ⊂ Cl(X0) and is independent, which means that no element x
of X0 is in the closure X0 \ {x}.

Lemma 1.2. Every set X has a basis. All these bases have the same cardinality,
the dimension of X.

Proof. See [6, Lemma C 1.6].y

In the three examples given above the dimension is computed as follows: If
M is an infinite set without structure, the dimension of X is its cardinality. If
M is an infinite vector space over a finite field, the dimension of a subset is the
linear dimension of the subspace it generates. If M is an algebraically closed
field, dim(X) is the transcendence degree of the subfield generated by X.

The dimension function, restricted to finite sets, has the following properties:

1. dim(∅) = 0

2. dim({a}) ≤ 1

3. dim(A ∪B) + dim(A ∩B) ≤ dim(A) + dim(B) (Submodularity)
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4. A ⊂ B ⇒ dim(A) ≤ dim(B) (Monotonicity).

Any such function comes from a pregeometry, which is unique since Cl(A) =
{b ∈M | dim(Ab) = dim(A)} (see e.g. [1, 6.14]).

Definition. A pregeometry is modular if for all Cl–closed X and Y

dim(X ∪ Y ) + dim(X ∩ Y ) = dim(X) + dim(Y ) (Modularity).

If the modular law is true whenever X ∩ Y has positive dimension, the prege-
ometry is locally modular.

Definition. A minimal structure M is (locally) modular if (M, acl) is (locally)
modular. A strongly minimal theory is (locally) modular if all its models are
(locally) modular.

Examples:

• Infinite sets and infinite vector spaces over a finite field are modular.

• Infinite affine spaces over a finite field are locally modular.

• An algebraically closed field K of at least transcendence degree 4 is not
locally modular.

To see this, choose e, a, b, x algebraically independent over the prime field F of
K. Let X be the algebraic closure of F (e, a, b) and Y be the algebraic closure
of F (e, x, ax+ b). Then the dimensions of X ∪ Y , X ∩ Y , X and Y are 4, 1, 3
and 3, respectively.

In the following we will present Hrushovki’s example of a strongly minimal
theory which is not locally modular but does not interpret an infinite group.

2 The setting
The theory we are going to construct will be an L-theory, where L consists of
just a ternary relation symbol R.

We consider the class C of all L-structures M = (M,RM ) where RM is
irreflexive and symmetric. So RM can as well be given by a set R(M) of three-
element subsets of M . We also allow the empty structure ∅. For finite A ∈ C
we define

δ(A) = |A| − |R(A)|.
A finite subset A is closed in M , or M is a strong extension of A

A ≤M,

if δ(A) ≤ δ(B) for all A ⊂ B ⊂M . We will work in the class

C0 = {M ∈ C | ∅ ≤M},

i.e. in the class of all M ∈ C with δ(A) ≥ 0 for all finite A ⊂M .
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Lemma 2.1. C0
fin, the class of finite members of C0, has the amalgamation

property for strong extensions (APS).

Proof. If M1 and M2 are two extensions of N , we define their free amalgam
M1⊗N M2 as follows. We assume that M1 and M2 intersect in N and set
M1⊗N N2 = M1 ∪M2 and R(M2⊗N M2) = R(M2) ∪R(M2).

If B is closed inM and C a finite extension of B, then C is closed inM ⊗B C.
So if A and C are finite strong extensions of B, then A⊗B C is a common strong
extension of A and C.

Proposition 2.2 (Fraïssé). Let K be a non-empty subclass of C0, closed under
taking closed substructures and direct unions. Assume further that Kfin has the
APS. Then K contains a unique countable universal homogeneous structure M ,
i.e.

a) All A ∈ Kfin can be strongly embedded in M .

b) Every isomorphism between two finite closed subsets of M extends to an
automorphism of M .

Proof. By an easy adaption of the classical Fraïssé construction. See [6, The-
orem 4.4.4]. For the existence of M one uses the fact that the composition of
two strong extensions is again a strong extension. This follows from Corollary
3.2 below. Uniqueness uses that every finite subset of M is contained in a finite
closed subset. This will be proved in Lemma 3.3.

For countable M ∈ K conditions a) and b) are equivalent to M being rich:
If B is closed in M and B ≤ C ∈ Kfin, then C can be strongly embedded in M
over B. Note that all rich structures are partially isomorphic (for a definition
see e.g. [6, Exercise 1.3.5]) by the family of isomorphisms between finite closed
subsets.

We call M the strong Fraïssé-limit of Kfin. Hrushovski’s example will be the
strong Fraïssé-limit of a suitable chosen subclass of C0

fin.

3 Delta functions
The function δ which we have defined in the last section on finite elements of C
has a lot of interesting properties. Surprisingly most of these properties follow
from the fact that δ is a δ-function in the following sense:

Definition. Let M be a set. A function δ which associates an integer to any
finite subset of M is a δ-function if the following axioms are satisfied:

1. δ(∅) = 0

2. δ({a}) ≤ 1

3. δ(A ∪B) + δ(A ∩B) ≤ δ(A) + δ(B) (Submodularity)
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Examples:

• The dimension function of a pregeometry on M .

• If M is in C, the function δ(A) = |A| − |R(A)|

For the rest of the section let δ be a δ-function on M .

A finite subset A of Y ⊂M is closed in Y if δ(A) ≤ δ(B) for all A ⊂ B ⊂ Y .
We denote this by A ≤ Y and call Y a strong extension of A. If we define

δ(A/B) = δ(A ∪B)− δ(B),

submodularity becomes

δ(A/B) ≤ δ(A/A ∩B).

This allows us to define for infinite X

δ(A/X) = inf
A∩X⊂B⊂X

δ(A/B) ∈ {−∞} ∪ Z

and to call X closed in Y if δ(A/X) ≥ 0 for all A ⊂ Y .

The following lemma is only a reformulation of the definition.

Lemma 3.1. Let X be a subset of Y . Then

X ≤ Y ⇔ δ(A/A ∩X) ≥ 0 for all A ⊂ Y

Corollary 3.2.

1. If X ≤ Y , then U ∩X ≤ U ∩ Y for all U .

2. ≤ is transitive.

3. If the Xi are closed in Y , then also their intersection.

Proof.

1. follows immediately from the Lemma

2. Assume X ≤ Y ≤ Z and let A be a finite subset of Z. Then by the lemma
δ(A ∩X) ≤ δ(A ∩ Y ) ≤ δ(A). This implies δ(A ∩X) ≤ δ(A) and so X ≤ Z by
the lemma again.

3. It is enough to consider finite intersections. But this follows from 1. and 2: If
X2 ≤ Y , we have X1∩X2 ≤ X1, and if also X1 ≤ Y , we have X1∩X2 ≤ Y .
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It follows that every X is contained in a smallest closed subset of M , the
closure cl(X). This defines a closure operator of finite character.

We assume now ∅ ≤M , i.e. δ(A) ≥ 0 for all A ⊂M .

Lemma 3.3. The closure of a finite set is again finite.

Proof. Let A be finite and δ(B) minimal for A ⊂ B. Then B ≤M .

Definition. The dimension of A is defined as

d(A) = min{δ(B) | A ⊂ B} = δ(cl(A)).

Proposition 3.4. d is the dimension function of a pregeometry (M,Cl).

We call Cl the geometric closure. Note that d(A) ≤ δ(A) and cl(X) ⊂ Cl(X).

Proof. We check that d satisfies the submodular law. The other properties of a
dimension function are clear. Choose A ⊂ A′, B ⊂ B′ with d(A) = δ(A′) and
d(B) = B′. We have then

d(A ∪B) + d(A ∩B) ≤ δ(A′ ∪B′) + δ(A′ ∩B′)
≤ δ(A′) + δ(B′)

= d(A) + d(B).

Remark 3.5. If C is a subset of M , B closed in C and δ(C/B) = 0, then C
is contained in Cl(B).

Proof. Indeed, it follows that δ(C/cl(B)) = 0 and whence d(C/B) = 0.

Lemma 3.6. If (M,Cl) is modular, the union of two geometrically closed sets
is closed in M .

Proof. Let X and Y be geometrically closed. It is enough to show that every
finite subset C of X ∪ Y is contained in a closed set of the form A ∪ B, where
A ⊂ X and B ⊂ Y . Choose A and B closed with C ⊂ A ∪ B and so that
Cl(A) ∩ Cl(B) = Cl(A ∩ B). Modularity implies d(A ∪ B) = d(A) + d(B) −
d(A ∩B). So

d(A ∪B) ≥ δ(A) + δ(B)− δ(A ∩B) ≥ δ(A ∪B),

which means that A ∪B is closed.
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4 The rank ω case
Before we construct Hrushovski’s example we investigate the Fraïssé limit M0

of C0
fin itself. M0 is not strongly minimal, but has Morley rank ω. Although

this result will not be needed later, the notions and techniques of its proof will
be used in the next section.

Remark 4.1. (M0, Cl) is not locally modular.

Proof. Consider the structure Cnm = {a1, a2, b1, b2, c} with R(Cnm) consisting of
{a1, b1, c} and {a2, b2, c}. Cnm belongs to C0, so we may assume that Cnm ≤M0.
The two sets A = {a1, a2} and B = {b1, b2} are geometrically closed in Cnm,
but A ∪ B is not closed in Cnm. This implies that Cl(A) ∪ Cl(B) is not closed
in M0. So M0 is not modular. To see that M0 is not locally modular consider
Cnm ∪ {d}, A ∪ {d}, B ∪ {d} for some d not connected to Cnm.

The following will be a complete axiomatisation of the theory of M0.

Definition. M is a model of T 0 if the following holds:

a) M belongs to C0

b) Let B be a finite subset of M . Then M contains a copy of every strong
extension C of B with δ(C/B) = 0.

c) Let Fn denote the structure with n elements and no relations. Then Fn
is strongly embeddable in an elementary extension of M .

The first two conditions are clearly expressible by a set of axioms. Fn is
strongly embeddable in an elementary extension iff for all m the following is
true: M contains a copy of Fn which is closed in every m-element subset of M
which contains Fn. For each m this is an elementary statement.

Proposition 4.2. An L-structure M is rich (with respect to C0) iff it is an
ω-saturated model of T 0.

So M0 is a model of T 0, and every ω–saturated model of T 0 is partially
isomorphic, and therefore elementarily equivalent, to M0. This yields

Corollary 4.3. T 0 axiomatises the complete theory of M0.

Proof of 4.2. Assume first that M is rich. M belongs to C0 by definition. Fn
embeds strongly intoM , sinceM is rich and ∅ is closed inM and Fn. Finally let
B be a finite subset of M and C a strong extension with δ(C/B) = 0. Choose
B′ ≤ M containing B and consider C ′ = B′⊗B C. As noted in the proof of
Lemma 2.1, C ′ is a strong extension of B′ and embeds therefore (strongly) in
M . That M is ω-saturated will follow from the other direction.

Now assume that M is an ω-saturated model of T 0. Consider B ≤ M and
an extension B ≤ C. We may assume that the extension is minimal, i.e. B is a
maximal proper closed subset of C. By Lemma 4.6 below there are two cases:
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1. δ(C/B) = 0. Then M contains a copy C ′ of C over B. Since B is closed
in M and δ(C ′/B) = 0, it follows that C ′ is closed in M .

2. C = B ∪ {c} where δ(c/B) = 1, which means that c is not connected
with B. Since M strongly embeds every Fn and d(Fn) = n, M has
infinite geometric dimension. So M has an element c′ which is not in the
geometric closure of B. This means δ(c′/B) = 1 and B ∪ {c′} is closed in
M . B ∪ {c′} isomorphic to C over B.

It remains to show that a rich model M is ω-saturated. To see this choose an
ω-saturated modelM ′ of T 0. ThenM ′ is rich and therefore partially isomorphic
to M . This implies that also M is ω-saturated.

The following two lemmas hold inside any set M with a delta function:

Lemma 4.4. A proper strong extension C of B is minimal iff δ(C/D) < 0 for
all C with B  D  C.

Proof. Let δ(C/D) be maximal for D properly between B and C. If δ(C/D) is
non-negative, D is closed in C, so the extension B ≤ C is not minimal.

Corollary 4.5. If B ≤ C is minimal and C is neither contained in X nor
disjoint from X, then δ(C/X ∪B) < 0.

Lemma 4.6. If B ≤ C is minimal, there are two cases

1. δ(C/B) = 1 and C = B ∪ {c}

2. δ(C/B) = 0

Proof. If δ(C/B) > 0, pick any c ∈ C \ B. Then δ(C/Bc) ≥ δ(C/B) − 1 ≥ 0
and it follows from the last lemma that C = B ∪ {c}.

In M0 two finite tuples ā and ā′ have the same type iff their closures cl(ā)
and cl(ā′) are isomorphic. This is true for all models of T 0:

Lemma 4.7. Let M1 and M2 be two models of T 0. Then ā1 ∈M1 and ā2 ∈M2

have the same type iff ā1 7→ ā2 extends to an isomorphism cl(ā1)→ cl(ā2).

Proof. If ā1 and ā2 have the same type, they have the same geometric dimension.
The closure C of a tuple ā can be characterised as a minimal set C containing
ā with δ(C) = d(ā). So ā1 and ā1 have isomorphic closures.

If conversely ā1 and ā2 have isomorphic closures, we take ω-saturated exten-
sions Mi ≺M ′i . In these extension ā1 and ā2 have the same closures. Since the
M ′i are rich, this implies that ā1 and ā2 have the same type in M ′1 and M ′2.

We work now in a big saturated model M of T 0.

Lemma 4.8. Let B ≤ C be minimal, δ(C/B) = 0 and C closed in M . Then
tp(C/B) is isolated and strongly minimal.
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Note that we have to fix an enumeration of C when we speak of the type of C.

Proof. Let φ(x̄) be a quantifier free formula with parameters from B which
describes the isomorphism type of C/B. If C ′ is any other realisation of φ(x̄)
it follows from B ≤ M and δ(C ′/B) = 0 that C ′ is closed in M . So C ′ and C
have the same type over B and we see that φ isolates p = tp(C/B). Since we
can embed all C ⊗B C ⊗B . . .⊗B C in M , p has infinitely many realisation, i.e.
p is not algebraic. In order to show that p is strongly minimal we have to show
that p has only one non-algebraic extension to each B′ extending B. For this
we may assume that B′ is closed in M .

Since B′⊗B C is a strong extension of B′, we find a closed isomorphic copy
B′ ∪ C ′ of it in M . We claim that p′ = tp(C ′/B′) is the only non-algebraic
extension of p to B′. Indeed, if C ′′ is any realisation of p in M , we have by
minimality either C ′′ ⊂ B′, then C ′′ is algebraic over B′, or B′ ∩ C ′′ = B. In
the latter case δ(C ′′/B′) = 0 implies that B′∪C ′′ is closed inM and isomorphic
to B′ ∪ C ′, so that C ′′ realises p′.

Corollary 4.9. If B ≤ C ≤ M and δ(C/B) = 0, then tp(C/B) has finite
Morley rank. The rank is at least the length of a decomposition of C/B into
minimal extensions.

Proof. Strongly minimal types have Morley rank 1. So the corollary follows from
two general facts about Morley rank: Assume that the type of b is isolated. Then
the following holds:

1. If the Morley ranks of tp(a/b) and tp(b) are finite, then also the Morley
rank of tp(ab) is finite.

2. The Morley rank of tp(ab) is not smaller than the (ordinal) sum of the
Morley rank of tp(a/b) and the Morley rank of tp(b).

1. follows from the Erimbetov-Shelah inequality (see [6, Exercise 6.4.4]). 2 is
easy to prove.

Proposition 4.10. T 0 has Morley rank ω.

Proof. Let B ≤ M and c any element of M . If d(c/B) = 0, the last corollary
shows that tp(c/B) has finite Morley rank. Since there is only one other type
over B, namely tp(c/B) with d(c/B) = 1, this type has at most rank ω.

On the other hand it is easy to findB ≤M and elements cn such d(cn/B) = 0
and the extensions cl(Bcn)/B have decomposition length n. (Consider B =
{c−1, c0}, C = {c−1, . . . , cn}, and R(C) = {{cj , cj+1, cj+2} | i = −1, 0, . . . , n −
2}.) Since cl(Bcn) is algebraic over Bcn, tp(cn/B) has at least Morley rank n.
So there are 1–types of arbitrarily large finite rank.
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5 The collapse
We will now construct Hrushovski’s example Mµ as the Fraïssé limit of a care-
fully chosen subclass Cµ of C0. (Actually we will construct a family of structures,
depending on a parameter µ.) Mµ will be strongly minimal and Cl will coincide
with the algebraic closure operator. The structure Cnm constructed in Remark
4.1 will be a strong subset of Mµ. So Mµ will not be locally modular.

By Remark 3.5 if B is closed in a finite subset C of Mµ and δ(C/B) = 0,
we have to ensure that C will be algebraic (in Mµ) over B. We do this by
imposing on a special class of such extensions B ≤ C a bound for the number
of isomorphic copies of C over B in Mµ.

We call a pair A/X of disjoint sets prealgebraic minimal if

a) X ∪A belongs to C0.

b) X ≤ X ∪A is a minimal extension.

c) δ(A/X) = 0

We call a prealgebraic minimal pair A/B good if δ(A/B′) > 0 for every proper
subset B′ of B. For every prealgebraic minimal A/X there is a unique B ⊂ X
such that A/B is good: B is the set of all x which are connected with an element
a of A (this means that for some y ∈ X ∪ A the triple xay belongs to R). We
call B the basis of A/X. It is easy to see that

X ∪A = X ⊗
B

(B ∪A).

We have also
|B| ≤ 2 · |A|,

which can be seen as follows: δ(A/B) = 0 implies that R′ = R(B ∪ A) \ R(B)
has at most |A| elements. Goodness implies that every element of B belongs to
some set in R′, but such a set contains at most 2 elements of B.

Note: The existence of a basis does not formally follow from the axioms of
a delta function, cf. Remark 5.11.

Definition. A code α is the isomorphism type of a good pair (Aα/Bα). A
pseudo Morley sequence of α over B is a pairwise disjoint sequence A0, A1, . . .
such that all Ai/B are of type α.

Main Lemma 5.1. Let M ≤ N be in C0. Assume that N contains a a pseudo
Morley sequence (Ai) of α over B with more than δ(B) elements. Then one of
the following occurs:

1. B ⊂M

2. Some Ai lies in N \M .
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Proof. Let A0, . . . , Ar−1 be inM and Ar, . . . Ar+s−1 neither inM nor in N \M .
Assume that B is not contained inM . Then each of the Ai, i < r, adds a relation
to B, so we have

δ(B/M) ≤ δ(B/B ∩M)− r ≤ δ(B)− r.

The minimality of Ai/B implies δ(Ai/Ar . . . Ai−1MB) < 0 for all i ∈ [r, r+s−1]
(see Corollary 4.5). Whence δ(Ar . . . Ar+s−1/MB) ≤ −s. This implies

0 ≤ δ(Ar . . . Ar+s−1/M) ≤ δ(B)− (r + s)

and therefore r + s ≤ δ(B).

We fix now for every code α a natural number µ(α) ≥ δ(Bα).

Definition. Cµ is the class of allM ∈ C0 in which every pseudo Morley sequence
of α has length most µ(α).

We call a pseudo Morley sequence of length > µ(α) a long pseudo Morley se-
quence.

Examples:

• If M is in Cµ and we add a new unconnected point c to M , then M ∪ {c}
is in Cµ.

• The structure Cnm is in Cµ. (Up to automorphisms of Cnm the only good
pairs which occur are c/a1b1 and b1/a1c.)

Corollary 5.2. Cµfin has the amalgamation property for strong extensions.

Proof. Consider B ≤ M and B ≤ N in Cµ. We want to construct a common
strong extension of M and N which belongs to Cµ. We may assume that N
is a minimal extension of B and also that M ⊗B N , which is a common strong
extension of M and N (see Lemma 2.1), does not belong to Cµ. So M ⊗B N
contains a long pseudo Morley sequence (A′i) of some α over B′. By the Main
Lemma there are two cases:

1. B′ ⊂ M . Since M ∈ Cµ, there is an A′i which lies not completely in
M . So, since A′i/B′ is minimal, A′i is contained in A = N \ B. Now the
minimality of A/B implies that A/M is minimal. On the other hand, we
have δ(A′/M) = 0. So A′i and A must be equal.

A/B′ is a good pair, whence B′ must be contained in B. Since N ∈ Cµ,
there is an A′j which lies in M \ B. It follows that B′ is the basis of
A/B and of A′j/B. Whence A′j/B and A/B are isomorphic and we can
amalgamate M and N by mapping N onto B ∪Aj .

2. A′i ⊂ N \M for some i. Since A′i/B′ is good, we have B′ ⊂ N . N belongs
to Cµ and so some A′j lies in M \ B. This gives again that B′ ⊂ B and
we are back in Case 1.
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Let Mµ be the Fraïssé limit of Cµfin. The following will be a complete ax-
iomatisation of the theory of Mµ:

Definition. M is a model of Tµ if the following holds:

a) M belongs to Cµ.

b) No prealgebraic minimal extension of M belongs to Cµ.

c) M is infinite.

We have to explain why the second axiom can be elementarily expressed. Let
M ∈ Cµ and A/M a prealgebraic minimal pair with basis B and α the type
of A/B. We will show that depending on α there are are only a finite number
of codes α′ which can have a long pseudo Morley sequence in N = M ∪ A =
M ⊗(B ∪A). This implies easily that b) can be expressed by a set of sentences.

So assume that (A′i) is a long pseudo Morley sequence of α′ over B′ in N .
We apply the Main Lemma: If B′ ⊂ M , we conclude that some A′i equals A
as in the proof of the amalgamation property. Then also B′ = B and we have
α′ = α. If some A′i lies in A, the size of B′ can be bounded by 2|A|. So there
are only finitely many possibilities for α′.

Proposition 5.3. A structure M is rich iff it is an ω-saturated model of Tµ.

Corollary 5.4. Tµ axiomatises the complete theory of Mµ.

Proof of 5.3. Assume that M is rich. Since all Fn belong to Cµ, M is infinite.
For the second axiom let A/M be a prealgebraic minimal extension with basis
B and α the type of A/B. Assume that M ∪ A belongs to Cµ. Let C be any
extension of B which is closed in M . Then M contains a copy A′ of A over C.
We choose C ′ ≤ M which contains C ∪ A′ and continue. It results an infinite
pseudo Morley sequence of α, a contradiction. ThatM is ω-saturated will follow
from the other direction as in the proof of 4.2.

For the converse we need the following lemma.

Lemma 5.5. In every ω-saturated structure M ∈ Cµ, the algebraic closure
contains the geometric closure.

Proof. Since cl(B) can be described by a type over B, cl(B) is algebraic over B.
In order to show that Cl(B) is algebraic over B we may therefore assume that B
is closed inM . Then Cl(B) is the union of all extensions C with δ(C/B) = 0. So
it is enough to show that every prealgebraic minimal extension A/B is algebraic.
Let B0 be the basis of A/B and α the type of A/B0. Any sequence (Ai) of sets
with the same type over B as A is a pseudo Morley sequence of α and therefore
bounded in length by µ(α).

12



To finish the proof of the proposition we show that an ω-saturated model M of
Tµ is rich. Consider B ≤ M and an extension B ≤ C ∈ Cµ. We may assume
that the extension is minimal. There are two cases:

1. δ(C/B) = 0. By Corollary 5.2 (or its proof) since M ⊗B C is not in Cµ,
C embeds over B into M .

2. C = B ∪{c} where δ(c/B) = 1, which means that c is not connected with
B. In order to embed C strongly into M we have to find a c′ outside
Cl(B). But this follows from the last lemma because ω-saturation implies
that acl(B) is a proper subset of the infinite structure M .

The next lemma has the same proof as in the T 0-case.

Lemma 5.6. Let M1 and M2 be two models of Tµ. Then ā1 ∈M1 and ā2 ∈M2

have the same type iff ā1 7→ ā2 extends to an isomorphism cl(ā1)→ cl(ā2).

Theorem 5.7. Tµ is strongly minimal.

Proof. If d(c/B) = 0, c is algebraic over B. There is only one type tp(c/B)
with d(c/B) = 1, namely the type which says that c is not connected to cl(B)
and cl(B) ∪ {c} is closed.

It follows also from the proof that acl and Cl coincide (and therefore that the
relative dimension d(A/B) is the Morley rank of tp(A/B)). Since Cnm belongs
to Cµ, we have therefore:

Corollary 5.8. Tµ is not locally modular.

Corollary 5.9. Tµ is model complete.

Proof. Tµ is ∀∃-axiomatisable. Now use Lindström’s theorem: A ∀∃-theory
which is categorical in some cardinal is model complete.

We note here that T 0 is not model complete.

In order to show that Tµ does not interpret an infinite group we need the
following lemma:

Lemma 5.10. In structures from C0, d is flat on Cl-closed finite dimensional
sets E1, . . . , En: ∑

∆⊂{1,...,n}

(−1)
|∆|

d(E∆) ≤ 0

where E∅ = E1 ∪ . . . ∪ En and E∆ =
⋂
i∈∆Ei if ∆ 6= ∅.
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Proof. Choose finite closed sets Ai ≤ Ei big enough so that Cl(A∆) = E∆ for
all ∆. We have then to show that∑

∆⊂{1,...,n}

(−1)
|∆|
δ(A∆) ≤ 0.

But this is true for arbitrary sets Ai, since by the inclusion-exclusion principle
the left hand side equals

|R(A1) ∪ . . . ∪R(An)| − |R(A1 ∪ . . . ∪An)|.

Remark 5.11. Let δ be a flat δ-function. If A,B are disjoint and δ(A/B) = 0,
then there is a smallest B0 ⊂ B such that δ(A/B0) = 0.

Proposition 5.12. There is no infinite group interpretable in Tµ.

Proof. Let G be a group interpreted in a model M of Tµ, i.e. definable in M eq.
First we consider the case where G is actually definable in M . To ease notation
we also assume that G is 0-definable.

Let g be the Morley rank of G. Consider the group diagram: Choose inde-
pendent elements a1, a2, a3 of G of dimension g. Put b1 = a1 · a2, b3 = a2 · a3

and b2 = b1 · a3 = a1 · b3. We consider these six elements as the points of a
geometry with “lines” L1 = {a1, b1, a2}, L2 = {a2, b3, a3}, L3 = {a1, b2, b3} and
L4 = {b1, b2, a3}.

a1 a3

b1

b2

b3

a2

A
A
A �

�
�

A
A
A �
�
�

Q
Q
QQ �

�
��

QQ��

It is easy to see that each point on a line is algebraic over the other two
points on the line, and any three non-collinear points are independent.

We apply flatness to the four sets Ei = Cl(Li). Any two of this sets intersects
in the algebraic closure of a point, like E14 = E1 ∩ E4 = Cl(b1), and the
intersection of three equals Cl(∅). So we have

d(E1 ∪ E2 ∪ E3 ∪ E4) = 3g

d(Ei) = 2g

d(Eij) = g

d(Eijk) = 0

d(Eijkl) = 0

14



Flatness yields
g = 3g − 4 · 2g + 6 · g ≤ 0.

So g = 0 and G is finite.

Now assume that G is definable in M eq, say with parameters A ⊂M . Since
M is strongly minimal, we may assume that every element of G is over A
interalgebraic with a tuple from M . So we can replace the group diagram of G
by a group diagram in M with the same Morley rank (over A) and the proof
above applies.
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