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Chapter 1

Witt's Theorems

�1 Quadratic forms and spaces

We �x a �eld F of characteristic 6= 2.

De�nition. A n n-ary quadratic form is a homogeneous polynomial of degree
2 in n-variables with coe�cients in F .

So this is how a ternary quadratic form looks like:

f(x1, x2, x3) = a1,1x
2
1 + a2,2x

2
2 + a3,3x

2
3 + a1,2x1x2 + a1,3x1x3 + a2,3x2x3.

There are two extreme cases: Unary forms ax2 and the constant 0-form with
no variables. We denote these forms by 〈a〉 and 〈 〉.

De�nition. Two quadratic forms f and f ′ are equivalent, f ∼= f ′, if they di�er
by an invertible linear transformation of the variables. If x̄ is a column vector,
this means

f(x̄) = f ′(Sx̄),

where S is a matrix in GLn(F ).

Two unary forms 〈a〉 and 〈a′〉 are equivalent i� there a = s2a′ for some
s ∈ Ḟ .

As an example look at the two forms h = x21 − x22 and h′ = x1x2. They are
equivalent via the matrix

S =

(
1 1
1 −1

)
,

which is regular in characteristic 6= 2.

Lemma 1.1. A quadratic form can be written as f(x̄) = B(x̄, x̄) for a symmet-
ric bilinear form B, which is uniquely determined by f , it is the polar form of
f .

Proof. The polar form of a1,1x
2
1 + a2,2x

2
2 + a1,2x1x2 for example is

a1,1x1y1 + a2,2x2y2 + +
1

2
a1,2x1y2 +

1

2
a1,2x2y1.
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Excursion: Polars in the projective plane

If f is a ternary quadratic form, the equation f(x1, x2, x3) = 0 de�nes a conic Q
in the projective plane over F . The polar form B de�nes the associated polarity
which correlates a point p with the line de�ned by B(p, y) = 0, the polar of p.
This can be interpreted in geometrically:

Let a1 and a2 be the two points of Q where the lines a1p and a2p are tangent
to Q. Then the polar of p is the line through a1 and a2.

The polar form of a quadratic form f is given by a symmetric matrix M as

B(x, y) = x>Mx.

De�nition. A quadratic form f is regular, or non-degenerate, if M is regular.
The determinant of M is the determinant det(f) of f .

Lemma 1.2. If f and f ′ are equivalent, they have the same determinant up to
a square. This means det(f) = s2 det(f ′) for some s ∈ Ḟ .

Proof. That f(x̄) = f ′(Sx̄) for a regular matrix S means that

x̄>Mx̄ = x̄>S>M ′Sx̄,

and so M = S>M ′S and det(M) = det(S)2 det(M ′).

We say also that det(f) and det(f ′) have the same square class..

Remark 1.3. If f is reducible in F [x1, . . . , xn] and n ≥ 3, then f is degenerate.

Proof. If f is the product of two linear forms λ1 and λ2, write λi = ā>i x̄ for
vectors āi. We have then f(x̄) = x̄>ā1ā

>
2 x̄. So the matrix M of f is 1

2 (ā1ā
>
2 +

ā2ā
>
1 ), which has rank ≤ 2.

De�nition. A quadratic space is a �nite dimensional F -vector space V with a
quadratic map q : V → F , which (for a basis v1, . . . , vn) is given by a quadratic
form

(1.1) f(x1, . . . , xn) = q(x1v1 + · · ·+ xnvn).

Since an n-ary quadratic form f is determined1 by the the function it de�nes
on Fn, we can identify it with the quadratic space (Fn, f).

De�nition. An isometry between two quadratic spaces (V, q) and (V ′, q′) is an
isomorphism ϕ : V → V ′ of vector spaces which preserves q, i.e. q′(ϕ(v)) = q(v).
For V and V ′ being isometric, we write

(V, q) ∼= (V ′, q′).

We will often write simply V ∼= V ′, or q ∼= q′. It is clear that there is a canonical
bijection

n-ary quadratic forms

equivalence
←→ n-dimensional quadratic spaces

isometry
.

1remarkably, this is also true in characteristic 2
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The polar form Bf of f in (1.1) de�nes a symmetric bilinear form on V

B
( n∑
i=1

xivi,

n∑
i=1

yivi
)

= Bf (x̄, ȳ).

It is easy to see that this does not depend on the choice of the basis. This
follows also from the fact that q(v) = B(v, v) as in the proof of the following
lemma.

Lemma 1.4. Let (V, q) a quadratic space and B the associated polar form on
V . Then

B(v, w) =
q(v + w)− q(v)− q(w)

2
.

Proof.

q(v + w)− q(v)− q(w) = B(v + w, v + w)−B(v, v)−B(w,w)

= B(v, w) +B(w, v)

= 2B(v, w)

We de�ne the determinant d(q) of a quadratic map as the square class of
the determinant of its quadratic form

d(q) = det(f) · Ḟ 2.

This is well-de�ned by Lemma 1.2. The quadratic map q is regular (or non-
degenerate) if f is regular. Clearly q is regular if d(q) 6= 0.

De�nition. Two elements x, y of a quadratic space are orthogonal, or x ⊥ y,
if B(x, y) = 0. Two subsets X and Y of a quadratic space (U, p) are orthogonal
if x ⊥ y for all x ∈ X and y ∈ Y . We write X ⊥ Y for this.

The radical of a quadratic space is the set of all vectors which are orthogonal
to V :

rad(V, q) = {v ∈ V | v ⊥ V }

Lemma 1.5. A quadratic space is regular i� its radical is 0.

Proof. Consider the quadratic space space (Fn, f) and M being the matrix of
the polar form of f . Then rad(Fn, f) = {x̄ | x̄>M = 0}. So M is regular i�
rad(Fn, f) = 0.

De�nition. The orthogonal sum (V ⊥W, q ⊥ r) of two quadratic spaces (V, q)
and (W, r) is the direct sum V ⊥W = V ⊕W with the quadratic form

(q ⊥ r)(v + w) = q(v) + r(w).

It follows from Lemma 1.4 that polar form of q ⊥ r is given by

Bq⊥r(v + v′, w + w′) = Bq(v, w) +Br(v
′, w′).

If we �x a basis of V ⊥W which consists of a basis of V followed by a basis of
W , the matrix of Bq⊥r is the block matrix

Mq⊥r =

(
Mq 0
0 Mr

)
.
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Whence d(q ⊥ r) = d(q) · d(r).
The orthogonal sum of V and W can also be described as a quadratic space

(U, p) which is the direct sum of two orthogonal subspaces V ′ and W ′ such that
(V ′, p � V ′) ∼= (V, q) and (W ′, p �W ′) ∼= (W, r).

De�nition. A form which is identically zero is called totally isotropic.

Lemma 1.6. Every quadratic form can be uniquely decomposed as q ∼= qt ⊥ qr,
where qt is totally isotropic and qr is regular.

Proof. If V is a quadratic space, write V as the direct sum of Vt = rad(V ) and
any complement Vr. This sum is orthogonal. Vt is totally isotropic and Vr is
regular. Vr is canonically isomorphic with the quotient V/ rad(V ), on which q
is well-de�ned by q(v + rad(V )) = q(v).

Proposition 1.7. Let (U, p) be a quadratic space and V a regular subspace.
Then V is the orthogonal sum of V and its orthogonal complement

V ⊥ = {u ∈ U | u ⊥ V }.

Proof. Since V is regular, we have V ∩ V ⊥ = rad(V ) = 0. On the other hand,
we have always dim(V ⊥) ≥ dim(U) − dim(V ), by Linear Algebra. So U is the
direct, and orthogonal, sum of V and V ⊥.

Remark 1.8. If U is regular, we have always dim(V ⊥) ≥ dim(U)− dim(V ).

Proof. Linear Algebra.
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�2 Diagonalisation

Theorem 2.1. Every quadratic form is equivalent to a diagonal form

〈a1, . . . , an〉 = a1x
2
1 + · · ·+ anx

2
n.

Clearly the forms 〈a1, . . . , an〉 are the quadratic forms with diagonal matrixa1 . . .

an

 .

Proof. We have to show that every quadratic space (V, q) has an orthogonal
basis v1, . . . , vn. We do this by induction on the dimension of V . If q = 0, every
basis is orthogonal. Otherwise, there choose a vector v1 with q(v1) 6= 0. Split V
as the orthogonal sum of Fv1 and V

′ = v1
⊥. By induction V ′ has an orthogonal

basis v2, . . . , vn. Then v1, v2, . . . , vn is an orthogonal basis of V .

Note that in an orthogonal basis v1, v2, . . . , vn the quadratic map q has the form
〈q(v1), . . . , q(vn)〉.

De�nition. Let (V, q) be a quadratic space. We say that a �eld element a is
represented by q if a is non-zero and q(v) = a for some v ∈V. We denote by
D(q) the set of elements represented by q.

Corollary 2.2. An element a ∈ Ḟ is represented by q i� q is equivalent to a
diagonal form 〈a, . . .〉.

Proof. By the proof of 2.1.

Here are some rules about diagonal forms:

1. 〈a1, . . . , an〉 is regular i� all ai are non-zero.

2. det〈a1, . . . , an〉 = a1 · · · · · an

3. 〈a1, . . . , am〉 ⊥ 〈b1, . . . , bn〉 ∼= 〈a1, . . . , am, b1, . . . , bn〉
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�3 Binary quadratic forms

Lemma 1.6 implies

Remark 3.1. A degenerate binary quadratic form is equivalent to 〈0, b〉, where
b is unique up to a square.

Proposition 3.2. A regular binary form q is equivalent to 〈a, b〉 i� q represents
a and d(q) = ab.

Proof. If q represents a, it is equivalent to some 〈a, b′〉 for some b′ by Corollary
2.2. If d(q) = ab, we b′ = b up to a square. So 〈a, b′〉 ∼= 〈a, b〉

De�nition. Let (V, q) be a quadratic space. A vector v ∈ V is isotropic if
q(v) = 0. The space V is isotropic if it contains a non-zero isotropic vector.

So a quadratic space is totally isotropic i� all vectors are isotropic.

De�nition. The hyperbolic plane H is the space which belongs to the form
〈1,−1〉.

Theorem 3.3. Let (V, q) be a regular form of dimension 2. Then the following
are equivalent:

a) V ∼= H.

b) det(q) = −1 (mod Ḟ 2)

c) V is isotropic.

Proof. a)→b) det(H) = −1

b)→c) The hypothesis implies that q is equivalent to a form 〈a,−s2a〉. This

form has the isotropic vector

(
s
1

)
.

c)→a) Let v1 be an non-zero isotropic vector. Since q is regular, there is a w
such that b = B(v1, w) 6= 0. So for some choice of ε and v′2 = w + εv1 we have

q(v′2) = 2εb+ q(w) = 0.

If we set v2 = 1
2bv
′
2, we have q(v1) = q(v2) = 0 and B(v1, v2) = 1

2 . So, in this
basis, q is given by the form x1x2, and we see that V is a hyperbolic plane.

Exercise 3.1. Let q(x1, x2) be a binary quadratic form. Then

1. q is anisotropic i� q is irreducible.

2. q is degenerate if q is a square, up to a unit of F .

De�nition. An orthogonal sum of �nitely many hyperbolic planes is called a
hyperbolic space.

Corollary 3.4. Every regular quadratic form q decomposes as

q ∼= qh ⊥ qa,

where qh is the quadratic form of a hyperbolic space and qa is anisotropic.
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The form qa is called the anisotropic part of q.

Proof. It is enough to show that a regular space V has a hyperbolic plane as an
orthogonal direct summand if it is isotropic. Let v1 ∈ V \0 be isotropic. Chose w
with B(v1, w) 6= 0. The proof of b)→c) of Theorem 3.3 shows that Fv1 +Fw is
a hyperbolic plane. Being regular it is an orthogonal direct summand of V .

Theorem 3.5 (Witt Decomposition Theorem). Every quadratic form q decom-
poses uniquely as

q ∼= qt ⊥ qh ⊥ qa
where qt is totally isotropic, qh is the quadratic form of a hyperbolic space and
qa is anisotropic.

Proof. The existence follows immediately from Lemma 1.6 and Corollary 3.4.
Uniqueness follows from the Witt Cancellation Theorem of the next section.

De�nition. The Witt-index of q is 1
2 dim(qh), i.e. the number of copies of H

from which qh is built.

Remark 3.6. The Witt-index of a regular quadratic space is the dimension of
a maximal totally isotropic subspace.

So all maximal totally isotropic subspaces have the same dimension.

Proof. Let T be a maximal totally isotropic subspace of V . We proceed by
induction on dim(T ). If the dimension is 0, we have V = Va and the Witt-index
is 0. Otherwise decompose T as T = Fv1 ⊥ T ′, for some non-zero v1. Since
V is regular and v1 is not in T ′, there is a w which is orthogonal to T ′ but
not orthogonal to v1. Then v1 and w generate a hyperbolic plane H. Since H
is regular, we have V = H ⊥ V ′ for V ′ = H⊥. Since T ′ is a maximal totally
isotropic subspace of V ′, we can apply the induction hypothesis.
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�4 The Witt Cancellation Theorem

De�nition. Let V be a quadratic space. A decomposition V = U ⊥ W gives
rise to an automorphism ϕ of V by ϕ(u+ w) = u− w. We call ϕ a generalised
re�ection.

Lemma 4.1. Let v and v′ be two vectors in V with q(v) = q(v′) 6= 0. Then
there is a generalised re�ection of V which maps v to v′.

Proof. We show �rst that there is a decomposition V = U ⊥ W such that,
v + v′ ∈ U and v − v′ ∈ W . Indeed, v + v′ and v − v′ are orthogonal since
B(v + v′, v − v′) = q(v) − q(v′) = 0. So, if for example q(v + v′) 6= 0, we can
take U = F (v + v′) and W = (v + v′)⊥. It is not possible that both q(v + v′)
and q(v − v′) are zero by the parallelogram identity

q(v + v′) + q(v − v′) = 2q(v) + 2q(v′).

Let ϕ be the re�ection de�ned by the decomposition. Then

ϕ(v) = ϕ
( (v + v′)

2
+

(v − v′)
2

)
=

(v + v′)

2
− (v − v′)

2
= v′.

Theorem 4.2 (Witt Cancellation Theorem). If q ⊥ r and q ⊥ r′ are equivalent,
then so are r and r′.

Proof. Since q is a sum of 1-dimensional forms, we may assume that q = 〈a〉.
The case a = 0 is easy: write r = rt ⊥ rr and r

′ = r′t ⊥ r′r as in Lemma 1.6.
Then

(
〈0〉 ⊥ rt

)
⊥ rr ∼=

(
〈0〉 ⊥ r′t

)
⊥ r′r implies rt ∼= r′t and rr ∼= r′r by the

uniqueness part of Lemma 1.6.
Now assume that a 6= 0. The hypotheses means that in a quadratic space

V there are two vectors v and v′ with q(v) = q(v′) = a, and the forms r and r′

live on the complements v⊥ and v′⊥. By the lemma there is a re�ection ϕ of V
which maps v onto v′. Then ϕ maps v⊥ to v′⊥, and r and r′ are equivalent.

Exercise 4.1. Let w be an anisotropic vector and ρw the re�ection which belongs
to the decomposition V = w⊥Fw. Show that

ρw(v) = v − 2w

q(w)
B(w, v).

Exercise 4.2. If V is regular, then every isomorphism between two subspaces
U and U ′ extends to an automorphism of V .

Note that for regular U this follows from the theorem. A special case is that
two non-zero v and v′ with q(v) = q(v′) = 0 are conjugate by an automorphism
of V .
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�5 The Chain Equivalence Theorem

Theorem 5.1 (Witt Chain Equivalence Theorem). Two diagonal forms are
equivalent i� the can be connected by a chain of diagonal forms such that any
two subsequent links, 〈a1, . . . , an〉 and 〈a′1, . . . , a′n〉, are the same, except that
the may di�er for some index i where 〈ai〉 ∼= 〈a′i〉, or for some pair of distinct
indices i and j where 〈ai, aj〉 ∼= 〈a′i, a′j〉

Proof. All forms occurring in this proof are now meant to be diagonal. We
call two forms chain-equivalent if they can be connected by a chain as in the
theorem.
Claim: A form which represents b is chain-equivalent to form 〈b〉+ s′.
Proof of the claim: Assume that q = 〈a〉+ q′ represents b. There are two cases.
Case 1. 〈a〉 represents b, Then 〈a〉 and 〈b〉 are equivalent and so q and 〈b〉+ q′

are chain-equivalent.
Case 2. 〈a〉 does not represent b. Then b = ax2 + a′, where a′ is represented
by q′. Induction on the dimension yields that q′ is chain-equivalent to a form
〈a′〉 + q′′, and so q is chain-equivalent to 〈a, a′〉 + q′′. By Proposition 3.2 the
forms 〈a, a′〉 and 〈b, aa′b〉 are equivalent and so 〈a, a′〉 + q′′ is chain-equivalent
to 〈b, aa′b〉+ q′′. It follows that q is chain-equivalent to 〈b〉+ 〈aa′b〉+ q′′.
Proof of the theorem: Assume that q ∼= r. If r = 0, then also q = 0 and q
and r are chain-equivalent. If r is not 0, using 〈0, b〉 ∼= 〈b, 0〉, we see that r is
chain-equivalent to a form 〈b〉+ r′ for some non-zero b. Now q represents b. So
q is chain-equivalent to a form 〈b〉+ q′. It follows from Cancellation that q′ ∼= r′

and by induction, that q′ and r′ are chain-equivalent, which implies that q and
r are chain-equivalent.
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Chapter 2

The Witt ring of F

�6 The Witt-Grothendieck ring

De�nition. Let (V, q) and (W, r) be two quadratic spaces with polar forms Bq
and Br. Then V ⊗F W carries a quadratic form q ⊗ r with polar form de�ned
by

(Bq ⊗Br)(v ⊗ w, v′ ⊗ w′) = Bq(v, v
′) ·Br(w,w′).

Bq⊗Br is a well-de�ned bilinear form, since Bq(v, v
′) ·Br(w,w′) is a multilinear

function of v, v′, w, w′. It is symmetrical on pure tensors v ⊗ w and therefore
symmetrical on V ⊗F W .

Exercise 6.1. Let m = dim(n) and n = dim(r). If the determinants of q and
r are computed for the bases (vi) and (wj), and the determinant of q⊗ r for the
basis (vi ⊗ wj), then det(q ⊗ r) = det(q)n · det(r)m.

Lemma 6.1.

〈a1, . . . , am〉 ⊗ 〈b1, . . . , bn〉 ∼= 〈a1b1, . . . , aibj , . . . , ambn〉

Proof. If (vi) is an orthogonal basis of V and (wj) an orthogonal basis of W ,
then (vi ⊗ wj) is an orthogonal basis of V ⊗F W . If q(vi) = ai and r(wj) = bj ,
we have (q ⊗ r)(vi ⊗ wj) = Bq(vi, vi) ·Br(wj , wj) = aibj .

Corollary 6.2. d(q ⊗ r) = d(q)dim(r) · d(r)dim(q)

This follows of course also from Exercise 6.1.

De�nition. A half-ring is a structure (R,+, ·, 0, 1) where (R,+, 0) and (R, ·, 1)
are commutative monoids, satisfying (x+ y) · z = x · z + y · z and 0 · x = 0.

If (R,+, 0) is a cancellation semi-group, i.e. x+ y = x′ + y ⇒ x = y′, then
0 ·x = 0 follows from the other axioms since (0 ·x) + (0 ·x) = (0 + 0) ·x = 0 ·x =
0 + (0 · x).

The free half-ring generated by a1, . . . , an is N[a1, . . . , an], i.e. the set of all
polynomials in Z[a1, . . . , an] without negative coe�cients.
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Proposition 6.3. The set of equivalence classes of quadratic forms over F are
a half-ring under the operations q + r = q ⊥ r and q · r = q ⊗ r. The additive
semi-group has cancellation.

Proof. This can easily be checked using diagonal forms, see page 6 and Lemma
6.1. Note that 0 = 〈〉 and 1 = 〈1〉. Actually the equations to be veri�ed come
from natural isomorphisms. For example the natural vector space isomorphism
between (U ⊕V )⊗F W and (U ⊗F W )⊕ (V ⊗F W ) yields an isometry between
(p ⊥ q)⊗ r and (p⊗ r) ⊥ (q⊗ r). That the additive semi-group has cancellation
is the Witt Cancellation Theorem 4.2.

Lemma 6.4. Let (R,+, ·, 0, 1) be any structure with two operations and two
constants. Then there is unique homomorphism γ from R into a commutative
ring1 G(R) such that every homomorphism from R into a ring S is the compo-
sition of γ and a unique homomorphism G(R) → S. The ring G(R) is called
the Grothendieck ring of R.

The Grothendieck group of a structure (R,+, 0) is de�ned similarly.

Proof. Let R = Z[g(r)]r∈R be the free commutative ring generated by symbols
g(r), for r ∈ R. Let I be the ideal generated by all the elements g(r+s)−g(r)−
g(s), g(rs)− g(r)g(s), g(0), g(1)− 1. Set G(R) = R/I and γ(r) = g(r) + I.

Note that G(R) is generated by the γ(r) as a ring.

Lemma 6.5. 1. A cancellation monoid (R,+, 0) is embedded in its Grothen-
dieck group.

2. Let (R,+, ·, 0, 1) be a half-ring and (G(R),+, ·, 0, 1) its Grothendieck ring.
Then (G(R),+, 0) is the Grothendieck group of (R,+, 0).

Proof. 1. The Grothendieck group of a cancellation monoid (R,+, 0). consists
of equivalence classes of pairs (r, s), where (r, s) ∼ (r′, s′) if r+ s′ = r′+ s. The
embedding is given by γ(r) = (r, 0)/ ∼.

2. We start with the Grothendieck group γ : R→ G of (R,+, 0) and show that
G carries a unique ring structure for which γ is a ring homomorphism. This
must then be the Grothendieck ring of R.

For this note that G is the set of all di�erences γ(r) − γ(s). So we have to
show that

(6.1)
(
γ(r)− γ(s)

)
•
(
γ(r′)− γ(s′)

)
= γ(r · r′ + s · s′)− γ(r · s′ + s · r′)

de�nes a ring multiplication on G. For every r the map x 7→ γ(r · x) is a
homomorphism from R to G. So there is an endomorphism λr : G → G with
γ(r · x) = λr(γ(x)). Then the right hand side of (6.1) equals (λr − λs)

(
γ(r′)−

γ(s′)
)
, which shows that • is well-de�ned by (6.1). The rest is easy to check.2

De�nition. The Witt-Grothendieck ring Ŵ(F ) is the Grothendieck ring of the
half-ring of equivalence classes of regular quadratic forms over F .

1All rings considered (also non-commutative ones) have an identity 1, and all ring homo-
morphism considered preserve the identity.

2The axiom 0 · x = 0 is not used in the proof.
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Corollary 6.6. 1. Every element of Ŵ(F ) has the form q − r for regular
forms q and r.

2. q − r = q′ − r′ ⇔ q ⊥ r′ ∼= r ⊥ q′.

Lemma 6.7. The ideal generated by H is Z·H, i.e. the additive group generated
by H.

Proof. From 〈a〉⊗H ∼= 〈a,−a〉 ∼= H follows that q ·H ∼= dim(q) ·H. So in Ŵ(F )
we have (q − r) ·H = (dim(q)− dim(r)) ·H.

De�nition. The Witt ring of F is the quotient

W(F ) = Ŵ(F )/(Z ·H).

Lemma 6.8. Every element of W(F ) is of the form q + Z · H for a unique
anisotropic form q.

So the Witt ring is in bijection with the set of equivalence classes of anisotropic
forms.

Proof. We have to show that in W (F ) every q − r equals a unique anisotropic
form. Indeed, since−〈1〉 = 〈−1〉 modulo Z · H, we have q − r = q + 〈−1〉 · r
in W(F ). Decompose s = q + 〈−1〉 · r as sh + sa. Then q − r = sa in W(F ).
If two anisotropic forms s1 and s2 are equal in W(F ), then s1 = n · H + s2 or
s2 = n ·H + s2 for some n ∈ N. This is only possible if n = 0.

We call two quadratic forms q and r Witt equivalent if they are equal in
W(F ), and denote this by q ∼ r. Then we have

Corollary 6.9. 1. Two regular forms are Witt equivalent i� their anisotropic
parts are isomorphic.

2. Two regular forms of the same dimension are Witt equivalent i� they are
equivalent.

Proof. 1. A regular form is Witt equivalent to its anisotropic part.

2. Decompose qi = qih + qia. Then q
1 ∼= q2 i� dim(q1h) = dim(q2h) and q1a

∼= q2a i�
dim(q1) = dim(q2) and q1 ∼ q2.

13



�7 Presentation by generators and relations

Proposition 7.1. The additive group of Ŵ(F ) is presented as an abelian group
by

generators: a symbol [a] for each a ∈ Ḟ
relations: [ab2] = [a](7.2)

[a] + [b] = [a+ b] + [(a+ b)ab], if a+ b 6= 0(7.3)

Proof. Let A be the abelian group presented by the generators and relations.
Since the relations are true for the generators ‘a〉 of Ŵ(F ), the assignment

[a] 7→ 〈a〉 de�nes an epimorphism A→ Ŵ(F ). We show that the kernel is trivial.
So let [a1] + · · · + [am] − [b1] − · · · − [bn] be mapped to 0. Then 〈a1, . . . , am〉
and 〈b1, . . . , bn〉 are isomorphic. It follows that m = n. By the Witt Chain
Equivalence Theorem 5.1 we have only to consider the cases n = 1 and n = 2.
If 〈a1〉 ∼= 〈b1〉, we have a1 = s2b1, so [a1]− [b1] = 0 in A by (7.2). If 〈a1, a2〉 ∼=
〈b1, b2〉, we have b1 = a1x

2
1 + b2x

2
2 and a1a2 = b1b2 (mod Ḟ 2). Using (7.2) and

(7.3) this gives

[a1] + [a2] = [a1x
2
1] + [a2x

2
2] = [b1] + [b1(a1x

2
1a2x

2
2)] = [b1] + [b2].

Corollary 7.2. The additive group of W(F ) is presented as an abelian group

by the same generators and relations as Ŵ(F ) plus the relation

[−1] = −[1].

Proof. This is clear since W(F ) is Ŵ(F ) modulo the additive subgroup gener-
ated by 〈1〉+ 〈−1〉.

Proposition 7.3. The ring Ŵ(F ) is a presented as a commutative ring by

generators: a symbol [a] for each a ∈ Ḟ
relations: [a] + [b] = [a+ b] + [(a+ b)ab], if a+ b 6= 0(7.3)

[ab] = [a][b](7.4)

[1] = 1(7.5)

Proof. We prove �rst that the relations (7.2), or [b2] = 1, hold in the commu-
tative ring R presented by the generators and relations. For this we compute
[b] + [b] in two ways. First we have

[b] + [b] = [b+ b] + [(b+ b)bb] = [2b] + [2b3].

For b = 1 this yields 2 = 2[2], which implies

[b] + [b] = 2[b] = 2[2][b] = 2[2b].

So we have [2b] = [2b3] and multiplication with [ 1
2b ] yields 1 = [1] = [b2].

Since the relations are true for the generators 〈a〉 of Ŵ(F ), the assignment

[a] 7→ 〈a〉 de�nes a surjective ring epimorphism R → Ŵ(F ). By the above the

map A → Ŵ(F ) (see the proof of 7.1) factors through the map R → Ŵ(F ),
which is therefore injective.
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Corollary 7.4. The ring W(F ) is presented as a commutative ring by the same

generators and relations as Ŵ(F ) plus the relation

[−1] = −[1].
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�8 The fundamental ideal

Dimension is a homomorphism from the half-ring of regular quadratic forms to
Z. So, the formula

dim(q − r) = dim(q)− dim(r),

extends it to a ring homomorphism dim : Ŵ(F )→ Z.

De�nition. The fundamental ideal ÎF of Ŵ(F ) is the kernel of dim.

Lemma 8.1. ÎF is additively generated by the expressions 〈1〉 − 〈a〉, where
a ∈ Ḟ .

Proof. 〈a1, . . . , an〉 − 〈b1, . . . , bn〉 =
∑n
i=1(〈1〉 − 〈ai〉)−

∑n
i=1(〈1〉 − 〈bi〉).

The determinant d being a homomorphism from the semigroup of regular
quadratic forms to Ḟ /Ḟ 2 extends to an additive3 homomorphism

d : Ŵ(F )→ Ḟ /Ḟ 2

If we give the additive group Z × Ḟ /Ḟ 2 a ring structure4 by using the trivial
multiplication on Ḟ /Ḟ 2,

(z, ε) · (z′, ε′) =
(
zz′, εz

′
(ε′)z

)
,

we have a ring homomorphism

(dim,d) : Ŵ(F )→ Z× Ḟ /Ḟ 2

by Corollary 6.2. 5

Proposition 8.2. The homomorphism (dim,d) induces an isomorphism

Ŵ(F )/̂I2F → Z× Ḟ /Ḟ 2.

Proof. The map (dim,d) is sujective since (dim,d)
(
(z − 1) · 〈1〉+ 〈a〉

)
= (z, a).

So it remains to show that Î2F is the kernel. One inclusion is clear: Î2F is
additively generated by the products

(8.6)
(
〈1〉 − 〈a〉

)
·
(
〈1〉 − 〈b〉

)
= 〈1, ab〉 − 〈a, b〉.

〈1, ab〉 and 〈a, b〉 have the same dimension and determinant. So Î2F is contained
in the kernel.

Claim: Every element of Ŵ(F ) is modulo Î2F equivalent to an element of the

form (z − 1) · 〈1〉+ 〈a〉. Proof: Modulo Î2F we have 〈a〉+ 〈b〉 ≡ 〈1〉+ 〈ab〉 and
〈a〉 − 〈b〉 ≡ −〈1〉+ 〈ab〉.

Now let s be in the kernel. By the claim we may assume that s = (z−1)〈1〉+〈a〉.
Then z = 0 and a ≡ 1 (mod Ḟ ) and s = 0 is in Î2F .

3i.e. d(q + r) = d(q) d(r)
4Let R be a commutative ring and A be an R-module. The set of all formal sums r + a is

a ring with the obvious addition and the multiplication (r + a) · (r′ + a′) = rr′ + (r′a+ ra′).
5That this is a well de�nined homomorphism follows also from Proposition 7.3. Simply

check that elements (dim, d)(〈a〉) satisfy the relations. The relation (7.4) for example is true
since (dim, d)(〈ab〉) = (1, ab) = (1, a) · (1, b) = (dim,d)(〈a〉) · (dim, d)(〈a〉).
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Since dim(H) = 2, the dimension function descends to a ring homomorphism
dim0 : W(F )→ Z/2Z.

De�nition. The fundamental ideal IF of W(F ) the kernel of dim0.

Lemma 8.3. In the diagram

ÎF → Ŵ(F ) → Z
↓ ↓ ↓

IF → W(F ) → Z/2Z

the map ÎF → IF is a bijection.

Proof. The ideals Z · H and ÎF intersect trivially, so the map is injective. The
ideal IF consists of the classes of even dimensional forms q. Write q = p + r,
where p and r are forms of the same dimension. Then in W(F ) we have q =

p− 〈−1〉 · r, and p− 〈−1〉 · r ∈ ÎF .

Corollary 8.4. IF is additively generated by forms 〈1, a〉.

Proof. This follow from Lemma 8.1, since in W(F ) we have 〈1〉− 〈a〉 = 〈1,−a〉.

Corollary 8.5. InF , the n-th power of IF , is additively generated by n-fold
P�ster forms

〈〈a1, . . . , an〉〉 = 〈1, a1〉 · · · · · 〈1, an〉.

By convention 〈〈 〉〉 = 〈1〉.
The determinant d is not well de�ned on W(F ) since (.H) = −1. So we de�ne

for any s ∈ Ŵ(F )

d±(s) = (−1)
n(n−1)

2 d(s).

Lemma 8.6. d±(s) depends only on the class of s in W(F ).

Proof. We have to show that d±(s) = d±(s + H). This means that (−1)
n(n−1)

2

changes its sign, or n(n−1)2 changes its parity, if n is increased by 2. This follows
from the table

n (mod 4) 0 1 2 3
n(n−1)

2 (mod 2) 0 0 1 1

or, for positive n, from the formula n(n−1)
2 =

∑n−1
i=1 i.

Note that d± does not de�ne a homomorphism from the additive group of W(F )

to Ḟ /Ḟ 2, since n(n−1)
2 is not a homomorphism from Z to {1,−1}.

Let K be the additive subgroup of Z× Ḟ /Ḟ 2 which is generated by (2,−1).
This is actually an ideal since (z, ε) · (2,−1) =

(
2z, (−1)z

)
∈ K for all z and ε.

Let Q be the quotient (Z× Ḟ /Ḟ 2)/K. We have with this notation.

Proposition 8.7. The homomorphism (dim,d) induces an isomorphism W(F )/I2F →
Q.
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Proof. This follows from Proposition 8.2 as follows. The homomorphism (dim,d)

maps H to (2,−1). This implies that the inverse image of K is Î2F + ZH. On
the other hand Ŵ(F ) → W(F ) maps Î2F onto I2F . so we have W(F )/I2F ∼=
Ŵ(F )/

(̂
I2F + ZH

) ∼= (Z× Ḟ /Ḟ 2
)
/K ∼= Q.

The embedding Ḟ /Ḟ 2 → (Z×Ḟ /Ḟ 2) and the projection (Z×Ḟ /Ḟ 2)→ Z/2Z
induce a short exact sequence

Ḟ /Ḟ 2 → Q→ Z/2Z.

Remark 8.8. The sequence splits i� −1 ∈ Ḟ 2.

We will describe the structure of Q in Exercise 9.3, depending on wether the
sequence splits or not.

Proof. The sequence splits i� there is a section Z/2Z → Q, which means that
1 + 2Z can be lifted to an element (2n+ 1, ε) which has order 2 in Q, or (2(2n+
1), 1) ∈ K. This is equivalent to 1 = −1 in Ḟ /Ḟ 2.

Let Q′ the cartesian product Z/2Z× Ḟ /Ḟ 2. De�ne a bijection Q′ → Q by

(n̄, ε) 7→ (n, ε) ·K, for n = 0, 1 and n̄ = n+ 2Z

and pull back the operations from Q. This yields, for e, e′ ∈ Z/2Z,

(e, ε) + (e′, ε′) =
(
e+ e′, (−1)ee

′
εε′
)

(e, ε) · (e′, ε′) =
(
ee′, εe

′
(ε′)e

)
.

The n-fold sum of (1̄, 1) computed with the addition formula is

(n̄, (−1)1(−1)2 · · · (−1)n−1) =
(
n̄, (−1)

n(n−1)
2

)
.

So, the inverse map Q→ Q′ is given by (n, ε) ·K 7→
(
n̄, (−1)

n(n−1)
2 ε

)
.

Corollary 8.9. The pair (dim0,d±) de�nes an isomorphism W(F )/I2F → Q′.

Corollary 8.10. A regular form q of dimension n is in I2F i� n is even and

d(q) = (−1)
n(n−1)

2 .

Corollary 8.11.

IF/I2F ∼= Ḟ /Ḟ 2

Proof. The ideal IF is the kernel of the composite map W (F ) → Q → Z/2Z
and therefore the inverse image of the kernel of Q→ Z/2Z, which is Ḟ /Ḟ 2.

Corollary 8.12. For a �eld F the following are equivalent:

a) Ŵ(F ) is noetherian.

b) W(F ) is noetherian.

c) Ḟ /Ḟ 2 is �nite.
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Proof. a)→b) Homomorphic images of noetherian rings are noetherian again.

b)→c) IF/I2F ∼= Ḟ /Ḟ 2 is a W(F )/IF ∼= Z/2Z-module. If W(F ) is noetherian,
this module is �nitely generated and therefore �nite.

c)→a) If Ḟ /Ḟ 2 is �nite, there are only �nitely many 1-dimensional forms. So

Ŵ(F ) is �nitely generated � even as an abelian group.
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�9 Examples

9.1 Quadratically closed �elds

De�nition. A �eld F is quadratically closed if every element is a square.

Proposition 9.1. Let F be a quadratically closed �eld. Then

1. Regular quadratic forms are equivalent i� they have the same dimension.

2. dim : Ŵ(F )→ Z is a ring isomorphism.

3. dim0 : W(F )→ Z/2Z is a ring isomorphism.

Proof. 1. Each regular diagonal form 〈a1, . . . , an〉 is equivalent to 〈1, . . . , 1︸ ︷︷ ︸
n

〉.

2. Consider an element q − r of Ŵ(F ). If dim(q − r) = 0, we have dim(q) =

dim(r) and therefore q ∼= r, and q− r = 0 in Ŵ(F ). This shows that the kernel
of dim is trivial.

3. The isomorphism in 2. maps Z ·H to 2Z.

Exercise 9.1. To be quadratically closed is necessary for each of the three state-
ments of the proposition.

9.2 Euclidean �elds

De�nition. A �eld is formally real if −1 is not a sum of squares. A formally
real �eld is euclidean if every element or its negative is a square.

Formally real �elds are �elds which have an ordering. That is a linear order
satisfying x < y ⇒ x+ z < y + z and x < y ∧ 0 < z ⇒ xz < yz. A Euclidean
�eld F has a unique ordering, given by x < y ⇔ y − x ∈ Ḟ 2.

Proposition 9.2. Let F be an euclidean �eld. Then

1. For each positive n there are, up to equivalence, exactly two anisotropic
forms: n · 〈1〉 = 〈1, . . . , 1︸ ︷︷ ︸

n

〉 and n · 〈−1〉 = 〈−1, . . . ,−1︸ ︷︷ ︸
n

〉.

2. Ŵ(F ) is the group ring Z[G], where G = {〈1〉, 〈−1〉}.

3. W(F ) ∼= Z. For regular diagonal forms the isomorphism is given by the
signature

σ(〈a1, . . . , an〉) = (# of positive ai's)− (# of negative ai's).

For a group G the group ring Z[G] is a ring which contains G as a multiplicative
subgroup, with 1 as identity, which is a basis of the ring as a free abelian group.
This means that every element can uniquely be written as

∑
g∈G zgg, with

zg ∈ Z. This exists also for non-commutative groups G.
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Proof. Since Ḟ /Ḟ 2 = {1,−1}, every regular form is equivalent to a form

(9.7) n+ · 〈1〉+ n− · 〈−1〉 =< 〈1, . . . , 1︸ ︷︷ ︸
n+

−1, . . . ,−1︸ ︷︷ ︸
n−

〉.

Such a form can only be isotropic if n+ = 0 or n− = 0. Since F is formally
really, the forms n+·〈1〉 and n−·〈−1〉 are anisotropic indeed and non-isomorphic,
except of course if n+ = n− = 0. This proves 1.

It follows now from the Cancellation Theorem (or the Decomposition Theo-
rem 3.5) that in the forms (9.7) the numbers n+ and n− are uniquely determined.
So the half-ring of equivalence classes of regular forms is N[G] and 2. follows
immediately.

The isomorphism in 2. maps the class of H to 1 + 〈−1〉. This element

generates the kernel of the homomorphism Ŵ(F ) → Z which maps 〈−1〉 to
−1.

Sylvester's Inertia Law states that in every ordered �eld equivalent diagonal
forms have the same signature. For euclidean �elds this is the uniqueness of the
numbers n+ and n− in (9.7). The general case follows from the fact that every
ordered �eld can be embedded in a euclidean �eld, with the order preserved.

Exercise 9.2. To be euclidean is necessary for each of the three statements of
the proposition.

9.3 Fields where every regular binary form is universal

De�nition. A quadratic form which represents every non-zero element of F is
called universal.

The hyperbolic plane is universal since its quadratic form is equivalent to x1x2,
see the example on p. 2. Since every regular isotropic form contains a hyper-
bolic plane (see Theorem 3.5), this implies that every regular isotropic form is
universal

Lemma 9.3. Let F = Fq be a �nite �eld (of odd characteristic). Then

1. |Ḟ /Ḟ 2| = 2

2. −1 is a square in F i� q ≡ 1 (mod 4).

Proof. Since the characteristic is odd, the element −1 is di�erent from 1 and
the only element of order 2. The kernel of the squaring map Ḟ → Ḟ 2 is {1,−1},
so we have |Ḟ 2| = q−1

2 . That −1 is a square is equivalent to the existence of an

element of order 4. Since Ḟ is a cyclic group of order q − 1, this is means that
4 divides q − 1.

Corollary 9.4. In a �nite �eld every regular binary quadratic form is universal.

Proof. Let 〈a, b〉 be regular and c ∈ F = Fq. Since both sets aF 2 and c − bF 2

have q+1
2 elements, they intersect. So there are x and y with ax2 = c− by2, or

c = ax2 + by2.

Theorem 9.5. Let F a �eld where every regular binary form is universal. Then
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1. Regular quadratic forms are equivalent i� they have the same dimension
and the same determinant up to a square.

2. (dim,d) : Ŵ(F )→ Z× Ḟ /Ḟ 2 is a ring isomorphism.

3. W(F ) ∼= Q.

Proof. The hypothesis implies, and is actually equivalent to, that a regular form
〈a, b〉 is equivalent to 〈1, ab〉. Then, every regular form is equivalent to a form
(z − 1) · 〈1〉+ 〈a〉, see the proof of Proposition 8.2. For example

〈a, b, c〉 ∼= 〈1, ab, c〉 ∼= 〈1, 1, abc〉.

Such a form is determined by its dimension z and determinant a. This proves
1. and implies that the homomorphism Ŵ(F ) → Z × Ḟ /Ḟ 2 is injective, which
is 2.

We can deduce 2. also from 8.2 since the forms (8.6) are zero. The last
assertion follow immediately from 2. as in the proof of 8.2.

Corollary 9.6. Let F = Fq be a �eld of odd characteristic. Then

1. If q ≡ 1 (mod 4), then W(F ) ∼= Z/2Z[Ḟ /Ḟ 2].

2. If q ≡ 3 (mod 4), then W(F ) ∼= Z/4Z.

Proof. Write (Ḟ /Ḟ 2, ·) additively as {0, s}. Then Z/2 × Ḟ /Ḟ 2 is the the free
ring Z[s] generated by s subjected to the relations 2s = 0 and s2 = 0. Let s′ be
the element −1 · Ḟ . Then ideal K is the set of all 2z + zs′.

If q ≡ 1 (mod 4), then s′ = 0. So Q is a Z/2Z-algebra with basis 1, s
and multiplication de�ned by s2 = 0. The elements 1, 1 + s are also a basis and
(1+s)2 = 1. So Q is the group-ring Z/2Z[{1, 1+s}], and {1, 1+s} is isomorphic
to Ḟ /Ḟ 2.

If q ≡ 3 (mod 4), then s′ = s. Then Q is the ring freely generated by s with
the relations 2s = 0, s2 = 0 and 2 + s = 0. So we can replace s by −2 and get
the relations 2(−2) = 0 and the equivalent (−2)2 = 0. This de�nes Z/4Z.

Exercise 9.3. Show for arbitrary F that Q ∼= (Z/2Z)[Ḟ /Ḟ 2] if −1 is a square,
and Q ∼= (Z/4Z)[Ḟ /± Ḟ 2] otherwise.

Theorem 9.7. If k is algebraically closed, then in the rational function �eld
F = k(t) every regular binary form is universal.

For the proof we need some preparations.

De�nition. A quadratic form q is a group form if D(q), the set of elements
represented by q, is a subgroup of Ḟ .

Note that D(q) is closed under multiplication with elements of Ḟ 2. So, if x is in
D(q), then x−1 = x·(x−1)2 is also in D(q). Note also that group forms represent
1, so are equivalent to forms 〈1, a2, . . . , an〉.

Lemma 9.8. For arbirary F , The P�ster form 〈1, a〉 is a group form.

This is true for all P�ster forms, see Corollary 10.2.
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Proof. If b is represented by q = 〈1, a〉, the form q is equivalent to 〈b, ba〉 = 〈b〉·q.
So D(q) = b ·D(q).

Another proof is to represent q as the norm form of a 2-dimensional algebra6

A over F . Let A have the basis 1, α and the multiplication be given by α • α =

−a. Multiplication with w = x + yα has the matrix

(
x −ya
y x

)
, which has

the determinant x2 + y2a = q(w). That q is a group form follows now from
q(v • w) = q(v)q(w).

Lemma 9.9. Let q be regular and a 6= 0. Then q represents a i� 〈−a〉 ⊥ q is
isotropic.

Proof. If q(w) = a, we have −a · 12 + q(w) = 0, so 〈−a〉 ⊥ q is isotropic. If
conversely −a · x2 + q(w) = 0 and not both x and w are zero, we distinguish
two cases. It x is not zero, we have q(x−1w) = a. If x is zero, q is isotropic and
whence universal. So q represents also a.

Corollary 9.10. a ∈ D
(
〈−b〉 ⊥ q

)
i� b ∈ D

(
〈−a〉 ⊥ q

)
.

Proof of Theorem 9.7. Every non-zero element of F is a product of powers of
polynomials (t − α), α ∈ k, possibly with negative exponents. So Ḟ /Ḟ 2 is
generated by the t − α. We note �rst that every for all α and β the three
polynomials 1, α − t and β − t are linearly dependent over k. Since k = k2,
this implies that 〈1, α− t, β − t〉 is isotropic. So t− α belongs to D

(
〈1, β − t〉

)
.

By Lemma 9.8 is follows that all all −f belong to D
(
〈1, β − t〉

)
. Whence all

t−β belong to D
(
〈1, f〉

)
, which implies that all 〈1, f〉 are universal. Since every

regular binary form is a multiple of some 〈1, f〉, this proves the theorem.

6An F -algebra is an F -vector space A with a bilinear multiplication which turns A into a
ring, possibly non-commutative. The map a 7→ a · 1 de�nes a homomorphism from F to the
center (see p. 29) of A. So an F -algebra is a ring with a homomorphism from F to the center
of A. If A is not 0, we may consider F as a subring of A. Morphims between F -algebras are
F -linear maps which are ring homomorphisms at the same time.
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�10 P�ster forms

10.1 Round forms

De�nition. An element a ∈ Ḟ is a similarity factor of q if 〈a〉 · q ∼= q. The set
G(q) of similarity factors of q is group.

It is easy to see that Witt equivalent regular forms have the same similarity
factors. Also, by Corollary 6.9 (2), 〈a〉 · q and q are equivalent i� they are Witt
equivalent. So G(q) can be computed in W(F ).

It is clear that Ḟ 2 is a subgroup of G(q). The equation D(〈a〉 · q) = a ·D(q)
implies that D(q) is closed under multiplication with similarity factors of q.

De�nition. A form is round if G(q) = D(q).

Except for totally isotropic forms, where D(q) is empty and G(q) = Ḟ , this is
equivalent to D(q) ⊂ G(q). Note that the 0-fold P�ster form 〈1〉 is round. In
the proof of Lemma 9.8 we proved that 1-fold P�ster forms 〈1, a〉 are round.

Theorem 10.1. If q is round, then so is 〈1, a〉 · q.

Proof. Assume that c is represented by q′ = 〈1, a〉 · q. Then c = x + ay, where
x and y are values of q. There care three cases:

Case y = 0. Then c = x is a similarity factor of q and therefore of q′.

Case x = 0. Then c = ay is a similarity factor of q′ since a is a similarity factor
of 〈1, a〉 and y is a similarity factor of q.

Case x, y 6= 0. Then x and y are in G(q) and we have for all d, e

(10.8) 〈d, e〉 · q ∼= 〈dx, e〉 · q ∼= 〈d, ey〉 · q.

Then

〈1, a〉 · q ∼= 〈x, ay〉 · q by (10.8)
∼= 〈c, caxy〉 · q
∼= 〈c, ca〉 · q by (10.8)
∼= 〈c〉 · 〈1, a〉 · q

Corollary 10.2. P�ster forms are round, and therefore group forms.

10.2 2-fold P�ster forms

P�ster forms represent 1 and have therefore the form q = 〈1〉 ⊥ q0. q0 is uniquely
determined and called the pure part of q.

Exercise 10.1. A regular ternary form is the pure part of a P�ster form i� it
has determinant 1. A regular quaternary form is a P�ster form i� it represents
1 and has determinant 1.

Lemma 10.3. For a 2-fold P�ster q form the following are equivalent:
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a) q is isotropic

b) q is hyperbolic, i.e. equivalent to 〈〈1,−1〉〉.

c) The pure part of q is isotropic

Proof. a)→b): If q is isotropic, it is equivalent to a form H ⊥ s for some binary
form s. Since q has determinant 1, s has determinant −1 and is therefor again
a hyperbolic plane by Theorem 3.3.

b)→c) The pure part of q = 〈1,−1, 1,−1〉 is 〈−1, 1,−1〉.

c)→a) This is clear.

Corollary 10.4. For all a, b ∈ Ḟ the following are equivalent:

a) 〈〈a, b〉〉 is isotropic

b)
(
1 + 〈a〉

)(
1 + 〈b〉

)
= 0 in W(F )

c) 〈a, b〉 represents −1.

Proof. b) is a reformulation of 〈1, a〉〈1, b〉 being hyperbolic.

c) is equivalent to 〈a, b, ab〉 being isotropic, since 〈1, a, b〉 ∼= 〈ab〉〈a, b, ab〉 and
therefore by Lemma 9.9

−1 ∈ D(〈a, b〉) ⇔ 〈1, a, b〉 isotropic ⇔ 〈a, b, ab〉 isotropic.

Exercise 10.2. Prove that 〈〈a, b〉〉 is isotropic i� −a is a norm in the algebra
F [t]/(t2 + b).
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Chapter 3

Central simple algebras

�11 Quaternion algebras

De�nition. For elements a, b in Ḟ the quaternion algebra
(a, b
F

)
is the F -

algebra with generators i and j and de�ning relations i2 = a, j2 = b and
ij = −ji.

Hamilton's quaternions are in this notation H =
(−1,−1

R

)
.

Lemma 11.1. The elements 1,i,j,k = ij form a basis of
(a, b
F

)
Proof. The the next table shows that the subspace A of

(a, b
F

)
spanned by 1,i,j

and k is closed under multiplication.

· i j k
i a k aj
j −k b −bi
k −aj bi −a

.

So A equals
(a, b
F

)
. To show that 1,i,j and k are linearly independent we start

with a vector space B with basis 1,i,j and de�ne a bilinear multiplication by
the table above and the stipulation that 1 is a neutral element. It is now easy,
but tedious, to verify the associative law for the basis elements.

Another proof of the lemma is as follows: Let K be any extension of F which
contains a square root α of a and a square root β of b. By the next corollary
the quaternion algebra (a, b

F

)
= K ⊗F

(a, b
F

)
is isomorphic to M2(F ), the algebra of all 2 × 2-matrices over F , which has
dimension 4.

Lemma 11.2.
(−1, 1

F

)
∼= M2(F )
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Proof. We have to �nd matrices I and J such that I2 = 1, J2 = −1 such that
1,I,J and K = IJ are linearly independent. These are

I =

(
0 1
1 0

)
and J =

(
0 1
−1 0

)
.

Together with 1 =

(
1 0
0 1

)
and IJ =

(
−1 0
0 1

)
they are a basis of M2(F ).

It may be interesting how to �nd the such matrices. By 11.11 the quaternion

algebra
(−1, 1

F

)
is isomorphic to M2(F ) because it contains non-zero non-units,

for example e1 = i + j (it has norm zero, see Lemma 11.6). Let L be the left
ideal generated by e1. The the following equations show that e1 = i + j and
e2 = 1 + k are a basis of L:

ie1 = e2 ie2 = e1

je1 = −e2 je2 = e1.

With respect to this basis the matrices I and J correspond to left-multiplication
by i and j on L.

De�nition. For a quaternion algebra A we denote by A0 the subvector space
of pure quaternions π = xi+ yj + zk.

Corollary 11.3. If a and −b are squares in F , then
(a, b
F

)
is isomorphic to

M2(F ).

Proof. If α2 = a and β2 = −b, then i 7→ αi, j 7→ βj de�nes an isomorphism(a, b
F

)
→
(1,−1

F

)
.

Lemma 11.4. The square function π 7→ π2 de�nes a quadratic form on A0,
which is equivalent to 〈a, b,−ab〉 via the orthogonal basis i, j, k. The associated

polar form is
πβ + ρπ

2
.

Proof. The �rst part follow from the formula

(xi+ yj + zk)2 = x2 + y2 + z2.

The expression πρ+ρπ
2 is bilinear, symmetric and gives the square of π if π =

ρ.

De�nition. Conjugation of a quaternion algebra is the F-linear map, which
maps α = c+ xi+ yj + zk to ᾱ = c− xi− yj − zk.

Lemma 11.5. Conjugation is an anti-automorphism, i.e. an automorphism of
the vector space A which satis�es αβ = β̄ᾱ.

Proof. This is true for any linear automorphism f with f(i)2 = a, f(j)2 = b
and f(ij) = f(j)f(i).

De�nition. The norm N of a quaternion algebra is de�ned by

N(α) = αᾱ.
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Note that on A0 we have N(π) = −π2.

Lemma 11.6. 1. The map N is a quadratic form on A, which is equivalent
to 〈1,−a,−b, ab〉 = 〈〈−a,−b〉〉 via the orthogonal basis 1, i, j, k.

2. N is multiplicative: N(αβ) = N(α) N(β).

3. α is a unit in A i� N(α) is not zero.

Proof. 1. Write α = c+ π for c ∈ F and π ∈ A0. Then N(α) = (c+ π)(c− π) =
c2 − π2.

2. (αβ)αβ = (αβ)(β̄ᾱ) = αN(β)ᾱ = αᾱN(β) = N(α) N(β).

3. If α is a unit and αβ = 1, then N(α) N(β) = 1. So N(α) is not zero. If

conversely N(α) is not zero, then
ᾱ

N(α)
is an inverse of α.

This gives another explanation of the roundness of 〈〈−a,−b〉〉. If c is a norm,
i.e if c = N(α), we have cN(β) = N(αβ). So left multiplication with α is an
isometry between (A, cN) and (A,N).

Exercise 11.1. In a �nite-dimensional algebra an element which has a right
inverse or a left inverse is a unit.

Corollary 11.7. For a quaternion algebra A =
(a, b
F

)
the following are equiv-

alent:

a) A is isotropic

b) A is hyperbolic

c) A0 is isotropic

d) (1− 〈a〉)(1− 〈b〉) = 0 in W(F ).

e) 〈a, b〉 represents 1.

Proof. This follows from Lemma 10.3 and Corollary 10.4.

Proposition 11.8. Let A ans A′ be two quaternion algebras. Then the following
are equivalent:

a) A and A′ are isomorphic as F -algebras.

b) A and A′ are isomorphic as quadratic spaces.

c) A0 and A′0 are isomorphic as quadratic spaces.

Proof. b) and c) are equivalent by the Cancellation Theorem since A = A0 ⊥
〈1〉.

a)→c) (A0, N) can be recovered from the algebra structure of A as follows: The
pure part A0 is the set of elements outside Ḟ whose squares are in F . The norm
is −π2 on A0.
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c)→a) We show that if the quadratic space A′0 is isomorphic to 〈−a,−b, ab〉,

then the algebra A′ is isomorphic to
(a, b
F

)
: The assumption implies that A′0

contains elements orthogonal I and J with I2 = a and J2 = b. Being orthogonal
means IJ = −JI. This implies that i 7→ I, j 7→ I de�nes a homomorphism

ϕ : A =
(a, b
F

)
→ A′. There are two ways to show that ϕ is a bijection. First,

we can use that A is simple, i.e. has no non-trivial two-sided ideals. This is
proved in 11.14.1 Since, by de�nition, ϕ maps 1 to 1, the kernel of ϕ is di�erent
from A and therefore 0. Another argument shows that 1, I, J and K = IJ are
non-zero (since K2 = −ab) and orthogonal (since e.g. IK = aJ = −KI). So
these elements are linearly independent and in the image of ϕ.

Corollary 11.9.(a, b
F

)
∼=
(a′, b′

F

)
⇔ 〈〈−a,−b〉〉 ∼= 〈〈−a′,−b′〉〉

Corollary 11.10.

〈a, b〉 ∼= 〈a′, b′〉 i�
(a, b
F

)
∼=
(a′, b′

F

)
and d(〈a, b〉) = d(〈a′, b′〉)

Proof. If d(〈a, b〉) = d(〈a′, b′〉, we have 〈1, ab〉 ∼= 〈1, a′b′〉 and therefore by the
Cancellation Theorem

〈a, b〉 ∼= 〈a′, b′〉 ⇔ 〈1,−a,−b, ab〉 ∼= 〈1,−a′,−b′, a′b′〉.

De�nition. A quaternion algebra splits if it is isomorphic to M2(F ), the algebra
of all 2× 2-matrices over F .

Theorem 11.11. For a quaternion algebra A the following are equivalent:

a) A splits

b) A is isotropic

c) A is not a division ring.

Proof. The equivalence of b) and c) follows immediately from Lemma 11.6.3.
Clearly M2(F ) is not a division ring. So we have to prove that A is a matrix
ring, if it is isotropic. We know by 11.7 that A is hyperbolic, that is, A is
isomorphic to 〈1,−1, 1,−1〉 as a quadratic space. So by 11.9 A is isomorphic to(1,−1

F

)
, which is in turn isomorphic to M2(F ) by Lemma 11.2.

De�nition. An F -algebra A is central, if its center

Z(A) = {a ∈ A | ab = ba for all b ∈ A}

equals F . An algebra A is simple if it is simple as a ring, i.e. A is not 0, and
there are no other two-sided ideals besides 0 and A.

1This can also be veri�ed by a easy calculation. Or, it follows from also from
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Lemma 11.12. The algebra Mn(F ) of all n × n-matrices over F is central
simple if n > 0.

Proof. Let er,s = (δi,rδs,j) be the matrix with 1 in position (r, s) and zeros else-
where. These matrices form am F -basis of Mn(F ). They satisfy the equations
er,sei,j = δs,ier,j and 1 = e1,1 + e2,2 + · · ·+ en,n.

An element x =
∑
i,j ai,jei,j commutes with er,s if∑

j

as,jer,j = er,sx = xer,s =
∑
i

ai,rei,s,

which happens only if as,s = ar,r and all other as,j and ai,r are zero. So x
commutes with all er,s only it it has the form

∑
i aei,i.

For simplicity let I be a two-sided ideal and x =
∑
i,j ai,jei,j a non-zero ele-

ment of I. Consider some non-zero ai,j . Then I contains all er,s = a−1i,j (er,ixej,s),
and so I equals A.

Lemma 11.13. Let A be an F -algebra and K a �eld extension of F . Then
K ⊗F A is an K-algebra of the same dimension and we have

1. If K ⊗F A is central, then A is central.

2. If K ⊗F A is simple, then A is simple.

Proof. 1. The tensor product K ⊗ Z(A) is contained in the center of K ⊗F A.

2. If I is a two-sided ideal in A, the tensor product K ⊗ I is a two-sided ideal
in K ⊗F A

The converse of 1. is also true, see Lemma 13.2. The converse of 2 is true, if A
is central, see Lemma 13.3, and also the next exercise.

Exercise 11.2. Show that C⊗R C ∼= C× C.

Proposition 11.14. Quaternion algebras are central simple.

Proof. If we tensor
(a, b
F

)
with the algebraic closure K of F , we obtain

(a, b
K

)
,

which is isomorphic to Mn(K) by Corollary 11.3. Now the claim follows from
the last two lemmas.

Wedderburn's theorem on simple algebras, Corollary 12.9, states that simple
algebras are matrix rings over division algebras. So in dimension 4 this can be
only a division ring or a matrix algebra over F (for more detail see the �rst
paragraph of the proof of 12.11.) This is another proof of the c)↔a) part of
Theorem 11.11.
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�12 The Wedderburn Theorem

In the following R will be a ring, not necessarily commutative. By R-module
we mean left R-module.

De�nition. A non-zero R-module L is minimal,, if it has no submodules other
that 0 and L. A direct sum of minimal modules is semi-simple..

Lemma 12.1. A module is semi-simple i� it is a sum of minimal modules.

Proof. Let M be the sum of the minimal submodules Li, (i ∈ I). Choose a
maximal subfamily (Li | i ∈ I0) which is independent, i.e. whereM0 =

∑
i∈I0 Li

is a direct sum. Consider an element j ∈ I. The maximality of the subfamily
implies that Lj and M0 intersect non-trivially. Since Lj is minimal, it must be
contained in M0. This shows M0 = M .

Exercise 12.1. Show that a module is semi-simple i� every submodule is a
direct summand.

Hint: If M is a sum of minimal submodules, N a submodule and K is maximal with

K ∩ N = 0, then K + N = M , as in the last Lemma. For the other direction, show

�rst for arbitrary M : If a ∈ M , and N is maximal with a 6∈ N , then a+N generates

a minimal submodule of M/N .

Exercise 12.2. Quotients and submodules of semi-simple modules are semi-
simple again. If M is the sum of minimal ideals Li, then every minimal ideal
is isomorphic to one of the Li.

Hint: A quotient of a minimal L is either zero or isomorphic to L. Also use the last

exercise.

De�nition. A ring R is semi-simple if it is semi-simple as a left R-module.

Exercise 12.3. If R is semi-simple, then all R-modules are semi-simple. Each
minimal module is isomorphic to a minimal left ideal of R.

Hint: Every cyclic module Ra is isomorphic to R/Ann(a), where Ann = {r | ra = 0}.

Theorem 12.2 (Wedderburn). A semi-simple ring is a �nite direct product of
matrix rings Mn(D), over division rings D.

We will see (Exercise 12.4, Proposition 12.8, Corollary 12.9) that the converse
is also true: Finite direct products of matrix rings over division rings are semi-
simple.

De�nition. A ring is left artinian artinian if there is no in�nite descending
sequence of let ideals.

Finite-dimensional algebras are artinian, or more generally, rings which contain
a division ring over which they are a �nite-dimensional left vector-space. So we
have

Corollary 12.3. Semi-simple rings are artinian.

Exercise 12.4. Show, without using Wedderburn's Theorem, that �nite direct
products of semi-simple (artinian) rings are semi-simple (artinian).

31



Wedderburn's theorem will follow from a series of lemmas:

Lemma 12.4. A non-zero homomorphism between two minimal modules is an
isomorphism.

Proof. If ϕ : L1 → L2 is a non-zero, the kernel of ϕ is zero if L1 is minimal, and
the image is L2 if L2 is minimal.

Corollary 12.5 (Schur's Lemma). The endomorphism ring End(L) of a min-
imal module is a division ring.

Lemma 12.6. The endomorphism ring of a direct sum M =
⊕n

i=1Ni of n
copies of N is isomorphic to Mn(End(N)).

Proof. Let εi : Ni →M and πi : M → Ni be the embeddings and the projections
which come with the direct sum decomposition. Note that we have πiεj = δij
and

∑n
i=1 εiπi = 1. If ϕ is an endomorphism ofM , then ϕ =

∑
i,j εiϕi,jπj , where

ϕi,j = πiϕεj is a homomorphism Nj → Ni, i.e. an endomorphism of N . The
map2 ϕ 7→

∑
i,j ϕi,jei,j de�nes now an isomorphism End(M) → Mn(End(N)).

Lemma 12.7. The endomorphism ring of the left R-module RR, is canonically
isomorphic to Rop.

Proof. Right multiplication with an element r is an endomorphism ρr of RR.
This de�nes a ring homomorphism from Rop to End(RR), which is injective
because r = ρr(1). Every endomorphism ϕ equals ρr for r = ϕ(1), since ϕ(x) =
ϕ(x · 1) = x · ϕ(1) = ρr(x).

Proof of Theorem 12.2. A semi-simple ring R is the direct sum of �nitely many
minimal left ideals since such a sum equals R if only it contains 1. We group
isomorphic left ideals together and write

RR ∼= Ln1
1 ⊕ · · · ⊕ L

nk

k ,

with pairwise non-isomorphic minimal Li. Since for di�erent i and j there are
no non-zero homomorphisms from Lni

i to L
nj

j , the endomorphism ring of RR
is isomorphic to the direct product of the End(Lni

i ). Each of these rings is
isomorphic to Mni

(End(Lni
i )), and by Schur's Lemma each Di = End(Lni

i ) is a
division ring. So Rop is isomorphic to a direct product of the Mni

(Di). Now the
theorem follows since, by the transposition map, Mni

(Di)
op ∼= Mni

(Dop
i ).

Proposition 12.8. A simple artinian ring R is semi-simple. All minimal left
ideals are isomorphic as R-modules.

Proof. Since R is artinian and non-zero, there is a minimal left ideal L. Then∑
r∈R Lr is a two-sided ideal and so equals R. The Lr are either 0 or isomorphic

to L. Now apply Exercise 12.2.

Corollary 12.9 (Wedderburn Theorem on simple algebras). A �nite-dimensional
simple F -algebra is a matrix algebra Mn(D) over a division ring D which is itself
a �nite-dimensional F -algebra.

2The ei,j are the matrices used in the proof of 11.12.
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Proof. A �nite-dimensional simple F -algebra A is a direct product of matrix
rings over division rings. By simpleness (or since all minimal left ideas are
isomorphic) there is only one factor Mn(D). The proof of Lemma 11.12 shows
that the center of Mn(D) equals the center of D, which must then contain F .
(Alternatively one can argue that D is the endomorphism ring of a (minimal)
left ideal, and so contains F .)

Remark 12.10. If D is a division ring and n > 0, Mn(D) is simple artinian.

Proof. That Mn(D) is simple can be seen either by the same proof as 11.12, or
by the observation Mn(D) = D ⊗F Mn(F ), where F is any �eld contained in
D, and an application of 13.3.

Proposition 12.11. A central simple F -algebra of dimension 4 is a quaternion
algebra. The dimensions 2 and 3 do not occur.

Proof. Let A be a central simple F -algebra of dimension 2, 3 or 4. Then A is
a Mn(D), for a division ring F , which has F in its center. Since dimF (A) =
dimF (D) · n2, we have either A = M2(F ), which is a quaternion algebra, or
A = D.

So we may assume that A is a division algebra. Since A is not commutative
there are non-commuting elements p and q. The �eld F (p) lies properly between
F and A, and since we have

dimF (A) = [F (p) : F ] · dimF (p)(A),

it follows that [F (p) : F ] = dimF (p)(A) = 2 and A has dimension 4 over F .
Since F is not of characteristic 2, the two �elds F (p) and F (q) can be obtained
by adjoining square roots of element of F . So we may assume that p2 and q2 are
in F . c Since F (p) is commutative, conjugation with p is an non-trivial auto-
morphism of F (p)-vector space A. In terms of the basis 1, q this automorphism

is given by a matrix

(
1 δ
0 ε

)
, for δ, ε ∈ F (p). Conjugation with p2 is trivial, so

the matrix has order 2, which means that ε2 = 1 and δ + δε = 0. If ε = 1, it
would follow that δ = 0, and conjugation with p would be trivial. So we have
ε = −1, and it follows that

p−1qp = δ − q.

This implies pq + qp = px ∈ F (p). It follows that on V = F · p + F · q
the function 1

2 (xy + yx) de�nes a symmetric F -bilinear form with values in F .
Chose an orthogonal basis I, J of V . And set I2 = a and J2 = b. We have

IJ = −JI. So the i 7→ I and j 7→ J de�nes a homomorphism from
(a, b
F

)
to A,

which is an isomorphism, since
(a, b
F

)
is simple and A has dimension (at most)

4.
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�13 The Brauer Group

We call a central simple algebra an CSA.. Usually this will be an algebra over
F .

The tensor product C = A ⊗F B of two F -algebras A and B is the tensor
product of the F -vector spaces with the (bilinear) multiplication de�ned by

(a⊗ b) · (a′ ⊗ b′) = (aa′)⊗ (bb′).

This is again an F -algebra. The homomorphisms a 7→ a ⊗ 1 and b 7→ 1 ⊗ b
embed A and B in C. We will often identify A and B with their images in C.
Note that in C the elements of A commute with the elements of B.

Theorem 13.1. If A and B are CSA, the so is A⊗F B.

This follows from the next two Lemmas.

Lemma 13.2. For two F -algebras A and B we have Z(A⊗F B) = Z(A)⊗Z(B).

Proof. Let z be in the center of A ⊗F B. If (ai) is a basis of A. we can
write z =

∑
i ai · bi, for unique bi ∈ B. An equation bz = zb translates to∑

i ai · bbi =
∑
i ai · bib. So, since z commutes with B, all bi belong to B. It

follows that for a basis (b′i) of C(B) we can write z =
∑
i a
′
i · b′i, for unique a′i in

A. Since z commutes with A it follows as before that all a′i belong to Z(A).

Lemma 13.3. If A is CSA and B is simple, then also A⊗F B is simple.
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