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Abstract

We study the groups GalL(T ) and GalKP (T ), and the associated
equivalence relations EL and EKP , attached to a first order theory T .
An example is given where EL 6= EKP (a non G-compact theory). It
is proved that EKP is the composition of EL and the closure of EL.
Other examples are given showing this is best possible.

1 Introduction and preliminaries.

Let T be a complete first order theory, possibly many-sorted. We will be
studying a certain group, GalL(T ), the Lascar group of T . If T is the theory
of algebraically closed fields of characteristic 0, this will be the absolute
Galois group of Q (a profinite group). For “G-compact” theories, GalL(T )
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has naturally the structure of a compact (Hausdorff) topological group. In
general GalL(T ) will be more of a “descriptive set-theoretic” invariant of T .

Let us begin with an informal description of the relevant groups and
equivalence relations. Let M̄ be a very saturated model of T . “Small”
or “bounded” means of strictly smaller cardinality than that of M̄ . An
equivalence relation will be called bounded (finite) if it has a bounded (finite)
number of classes. Type-definable over ∅ (or ∅-type-definable) means defined
by a possibly infinite set (conjunction) of L-formulas. Let S be any sort. ES

L is
the finest bounded invariant (under Aut(M̄)) equivalence relation on S. ES

KP

is the finest bounded type definable over ∅ equivalence relation on S. ES
Sh is

the intersection of all finite ∅-definable equivalence relations on S. ES
L refines

ES
KP which in turn refines ES

Sh. These equivalence relations have explicit
syntactic descriptions which do not depend on the choice of M̄ . For each
of these equivalence relations E, S/E denotes the quotient space, on which
clearly Aut(M̄) acts. We obtain the corresponding “Galois groups”, GalSL,
GalSKP and GalSSh. All this can be done with some ∅-type-definable set X of
possibly infinite tuples in place of the sort S. Roughly speaking, taking the
projective limit of these groups as X varies, yields groups GalL(T ), GalKP (T )
and GalTSh which are invariants of the bi-interpretability type of T . Precise
statements and definitions will be given below, but for now let us say that
these Galois groups come equipped with “additional structure”: GalSh(T ) is
a profinite group and GalKP (T ) is a compact group (and in fact GalSh(T )
is the maximal profinite quotient of GalKP (T )). GalL(T ) can be described
as a “quasicompact” group (that is compact but not necessarily Hausdorff).
However possibly more interesting is that GalL(T ) arises naturally as the
quotient of a certain “space of types” by a certain equivalence relation which
is a countable union of closed sets. As such GalL(T ) is a kind of “descriptive
set-theoretic” invariant of T . In many cases (such as when T is stable) all
these equivalence relations and Galois groups coincide.

GalL(T ), the Lascar group, was introduced by the second author in [6].
He also introduced the notion of a G-compact theory and remarked that all
known theories were G-compact. Essentially G-compactness of T means that
GalL(T ) = GalKP (T ).

Additional interest was generated by the work on simple theories [5],
where Lascar strong types (EL-classes) took the place of strong types. Kim
[4] subsequently showed that simple theories are G-compact.

The second author, in [6], defined a topology on GalL(T ) in the case where
T is G-compact, making GalL(T ) into a compact (Hausdorff) topological
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group. In [2], Hrushovski gave another account of the topology, working
directly with GalKP (whether T is G-compact or not). In fact in that paper
the EKP notation was introduced. Similar things were done in [7]. The main
point was that the spaces S/EKP or even X/EKP are naturally equipped
with compact Hausdorff topologies (the closed sets being precisely the type-
definable sets). There has been considerable attention paid to the issue
of proving that EKP = ESh in certain situations. For example in [1] this
is proved for supersimple theories. The simple case is still open although
Hrushovski [2] found a counterexample in the more general (non first order)
context of Robinson theories.

The current paper is concerned with the issue of when and how EL differs
from EKP , in particular the existence of non G-compact theories. The start-
ing point for our work was the discovery by the fourth author of such a theory
(non G-compact). This example together with two other related examples,
appears in section 4. In section 2 we prove that EKP is the composition of
EL and ĒL. (Here, working on a sort S say, ĒL denotes the closure of EL

in the Stone space of complete types in S × S.) This is done by character-
izing closure in the quasicompact group GalL(T ). In section 3, we look at
products and co-products of structures and study the resulting Galois groups.
Informed by this analysis, we present the examples in section 4. The “basic
example” (a product of circles with specified structures) has EKP different
from EL. A modification gives an example where EKP is different from ĒL

(showing that the results in section 2 are best possible). In a third example
we show that on EL, closure (in the Stone space on S×S) need not commute
with restriction to a complete type p(x).
We also ask some questions, which possibly need new kinds of examples to
settle.

In the rest of this section we repeat some definitions, fix notation, sum-
marise earlier relevant results, and give some additional information. As
above S denotes a sort in M̄ .

Definition 1.1 (i) ES
L is the finest bounded invariant equivalence relation

on S.
(ii) ES

KP is the finest bounded ∅-type-definable equivalence relation on S.
(iii) ES

Sh is the intersection of all finite ∅-definable equivalence relations on
S.
(iv) Let X be a ∅-type-definable set of possibly infinite tuples (for example X
could be a product of infinitely many sorts). EX

L , EX
KP , EX

Sh are defined as
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above. For example EX
KP is the finest bounded type-definable over ∅ equiva-

lence relation on X.

Remark 1.2 (i) ES
L refines ES

KP which in turn refines ES
Sh. In stable theo-

ries they are all equal. We will not say much about ESh.
(ii) Define a subset of X/EX

KP to be closed if its preimage in X is type-
definable (maybe with parameters). Then X/EX

KP is a compact Hausdorff
topological space. Similarly for X/EX

Sh except that this space is now profinite.

Definition 1.3 (i) AutfL(M̄), the group of Lascar strong automorphisms,
is the subgroup of Aut(M̄) consisting of f which fix each class of each EX

L

(X ∅-type-definable). Similarly for AutfKP (M̄) and AutfSh(M̄).
(iii) GalL(T ), the Lascar group of T is the quotient of Aut(M̄) by the (nor-
mal) subgroup AutfL(M̄). By definition it acts faithfully on {a/EX

L : X∅-
type-definable, a ∈ X}. Similarly for GalKP (T ) and GalSh(T ). The latter
two groups have the structure of compact Hausdorff topological groups (via
the Tychonoff topology for example). These (topological) groups are invari-
ants of (the bi-interpretability type of) T (and so do not depend on the choice
of M̄).

Fact 1.4 (i) Let X ⊆ Y be ∅-type-definable (or even invariant) sets of pos-
sibly infinite tuples. Then EY

L |X coincides with EX
L and it is precisely the

relation (on X) of being in the same orbit under AutfL(M̄).
(ii) Similarly for EKP and AutfKP (M̄). In particular, given a sort S and a
complete type p(x) of that sort, ES

KP |p = Ep
KP .

Proof. (i) is immediate.
(ii) is contained in Lemma 4.18 of [7]. But we will give another proof. Work
for simplicity in a sort S. It suffices to show that the equivalence relation
on S of being in the same orbit under AutfKP (M̄) is type-definable over ∅
(and thus has to be ES

KP ). a and b are in the same orbit under AutfKP (M̄)
iff tp(a/e) = tp(b/e) whenever e is a bounded hyperimaginary. The latter is
seen easily to be type-definable.

Corollary 1.5 Let S be a sort and X a ∅-type-definable subset of S. Let
E be any bounded ∅-type-definable equivalence relation on X. Then there is
a bounded ∅-type-definable equivalence relation E ′ on S such that E is the
restriction of E ′ to X.
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Proof By (ii) of the previous lemma, ES
KP |X refines E. The disjunction

ES
KP ∨ E is type-definable and as required.

Remark 1.6 By Fact 1.4, we can speak unambiguously of EL and EKP .
We will say that (possibly infinite) tuples a, b from M̄ have the same Lascar
strong type if EL(a, b) and the same KP -strong type if EKP (a, b).

Fact 1.7 AutfKP (M̄) is closed in Aut(M̄) (where Aut(M̄) is equipped with
the pointwise convergence topology: the basic open sets are the stabilizers of
finite tuples).

Proof. This is in 4.18 of [7].

Fact 1.8 The following are equivalent:
(i) AutfL(M̄) = AutfKP (M̄) (and so canonically GalL(T ) = GalKP (T )).
(ii) EL coincides with EKP (even on infinite tuples)
(iii) EL coincides with EKP on finite tuples and AutfL(M̄) is closed in
Aut(M̄).

Proof. See [4] and 4.20 of [7].

Fact 1.9 (i) EL(a, b) if and only if there is some n < ω and there are mod-
els M1, ..,Mn and a0, .., an such that a0 = a, an = b and tp(ai/Mi+1) =
tp(ai+1/Mi+1) for each i = 0, .., n− 1.
(ii) AutfL(M̄) is the subgroup of Aut(M̄) generated by the subgroups Fix(m)
where m ranges over enumerations of small submodels of M̄ .

Proof. (i) is well-known, see for example [5]. (ii) follows from (i) (and is
actually Lascar’s original definition of AutfL(M̄)).

Suppose that EL(a, b). We define d(a, b) to be the smallest n as in Fact
1.9(i).

We now discuss thick formulas, although these will play a minor role in
our proofs.

Definition 1.10 Fix a sort S. An L-formula θ(x, y), x, y of sort S, is said
to be thick, if for some n, for any a1, ..., an ∈ S, θ(ai, aj) for some i 6= j.
Similarly working inside a type-definable set of possibly infinite tuples.
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Note that thickness is a symmetric notion: if θ(x, y) is thick, then so is
θ(y, x). In particular
(*) any thick formula is implied by a symmetric thick formula.

Fact 1.11 Suppose a 6= b. The following are equivalent:
(i) θ(a, b) for all thick θ.
(ii) a and b belong to some infinite indiscernible sequence.
(iii) θ(a, b) holds for all symmetric thick formulas.

Proof. (i) implies (ii) is by compactness. (ii) implies (iii): if (ai : i < ω) is
infinite indiscernible and |= ¬θ(a0, a1), then |= ¬θ(ai, aj) for all i < j < ω,
so θ is not thick. (iii) implies (i) holds by (*) above.

Let Θ be the set of thick formulas.

Fact 1.12 (i) Θ(a, b) implies that tp(a/M) = tp(b/M) for some model M .
(ii) If tp(a/M) = tp(b/M) then there is c such that Θ(a, c) and Θ(c, b).

Proof. (i) is well-known. (ii) This actually lies behind Fact 1.9. The usual
proof is by choosing a coheir of tp(a/M) and constructing a sequence I such
that both aI and bI are (infinite) indiscernible. Alternatively one could argue
directly with thick formulas: As M is a model, for each thick symmetric
θ(x, y) we can find a1, .., an ∈ M (suitable n) such that for all a′ there is
i ≤ n such that θ(a′, an). As tp(a/M) = tp(b/M) we have θ(a, ai) ∧ θ(b, ai)
for some i. By compactness, we find c as required.

Note that if (a, b) begins an infinite indiscernible sequence then f(a) 6= f(b)
for any ∅-definable finite-to-one function (in M̄ eq). So we easily get examples
of a 6= b with tp(a/M) = tp(b/M) for some model, but where a, b does not
begin an infinite indiscernible sequence.

Fact 1.13 EL(a, b) iff there is n < ω and there are a0, a1, .., an with a0 = a,
an = b and Θ(ai, ai+1) for all i < n.

Proof. By 1.9 and 1.12.

Finally we mention a certain topology on GalL(T ) which was given in [7]. Let
µ : Aut(M̄) → GalL(T ) be the canonical surjective homomorphism. Fix a
small elementary substructure M0 of M̄ , enumerated by m0. In Definition 4.9

6



of [7], a subset C of GalL(T ) was defined to be closed if whenever gi ∈ µ−1(C)
for i ∈ I, g′ is some ultraproduct of the gi, and g ∈ Aut(M̄) is such that
tp(g(m0)/m0) = tp(g′(m0)/m0) then g ∈ µ−1(C). This defines a “topology”
on GalL(T ), independent of the choice of M0. When T is G-compact (so
GalL = GalKP ) this agrees with the topology on GalKP referred to earlier.

2 GalL(T )

We try to get a better understanding of the object GalL(T ) and see how
explicitly EKP can be obtained from EL. By studying closure in GalL(T ) we
will see that EKP is obtained by first taking the closure of EL (in the Stone
space sense) and then closing under EL.

Let us fix a small submodel M0 of M̄ , enumerated by m0. If T happens
to be countable, we may assume M0 is too. Let Sm0(m0) be the space of
extensions of tp(m0/∅) to complete types over m0, namely {tp(g(m0)/m0) :
g ∈ Aut(M̄)} equipped with the usual Stone space topology. Note that if
M0 is countable, Sm0(m0) is a Polish space. Let µ : Aut(M̄) → GalL(T ) be
the canonical homomorphism. Let µ1 : Aut(M̄) → Sm0(m0) be the surjective
map taking g ∈ Aut(M̄) to tp(g(m0)/m0). We begin by making explicit some
observations from [7].

Fact 2.1 µ factors through µ1. That is, for g ∈ Aut(M̄), µ(g) depends only
on tp(g(m0)/m0).

Proof. If tp(g(m0)/m0) = tp(h(m0)/m0), let γ ∈ Fix(m0) be such that
γ(g(m0)) = h(m0). Then, by Fact 1.9 (ii), both γ and h−1.γ.g are in
AutfL(M̄). As AutfL(M̄) is normal in Aut(M̄), γ.g = g.γ′ for some γ′ ∈
AutfL(M̄). Thus h−1.g.γ′ ∈ AutfL(M̄), whereby h−1.g ∈ AutfL(M̄) =
Ker(µ).

So we obtain a canonical surjective map ν : Sm0(m0) → GalL(T ) such that
ν.µ1 = µ.

Remark 2.2 Let p, q ∈ Sm0(m0). Then
(i) ν(p) = ν(q) if and only if for any (some) m realizing p and any (some)
n realizing q, EL(m,n) (equivalently m and n are in the same AutfL(M̄)-
orbit).
(ii) The equivalence relation ν(p) = ν(q) is (by 1.13 and (i)) a countable
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union of closed subsets of Sm0(m0) × Sm0(m0). In particular if T (and M0)
are countable, this is a Borel equivalence relation.
(iii) The set of Lascar strong types extending tp(m0/∅) is (naturally) a prin-
cipal homogeneous space for GalL(T ), so can be identified with GalL(T ) after
fixing a point (such as the class of m0).
(iv) (T countable.) The set of Lascar strong types on any sort S can be con-
sidered as the quotient of a Boolean space by a Borel equivalence relation:
Let m0 be a countable model, and let X be the space of complete types over
m0 in sort S. Define EL(p, q) if for some (any) realizations a of p and b of
q, EL(a, b).

Fact 2.3 (i) The topology on GalL(T ) referred to in the last paragraph of
section 1 is precisely the quotient topology under the map ν. That is C ⊆
GalL(T ) is closed if and only if ν−1(C) is closed in the space Sm0(m0).
(ii) GalL(T ) is a topological (not necessarily Hausdorff) group.
(iii) AutfKP (M̄) is precisely µ−1({id}) where id is the identity element of
GalL(T ).

Proof. (i) Lemma 4.10 of [7] says that C is closed in GalL(T ) just if {g(m0) :
g ∈ µ−1(C)} is type-definable over m0, namely if {tp(g(m0)/m0) : g ∈
µ−1(C)} (which is precisely ν−1(C)) is closed in Sm0(m0).
(ii) Let C ⊂ GalL(T ) be closed. We have to show that
(a) X = {(g, h) ∈ GalL(T )×GalL(T ) : g.h ∈ C} is closed and
(b) Y = {g ∈ GalL(T ) : g−1 ∈ C} is closed.
We will just deal with (a). Let Φ(x,m0) define the closed set ν−1(C). Let
p, q ∈ Sm0(m0), and let m,n be any realizations of p, q respectively. We
claim that (ν(p), ν(q)) ∈ X if and only if there is x such that Φ(x, m0) and
tp(x, n/∅) = tp(m,m0/∅). The verification is left to the reader: among the
points is that AutfL(M̄) is a normal subgroup of Aut(M̄).
(iii) Let H be the closure of the identity in GalL(T ), which is, by (ii) a (nor-
mal) subgroup. Let H1 = µ(AutfKP (M̄)). So ν−1(H1) is closed in Sm0(m0),
being defined by EKP (x,m0). Thus H ⊆ H1. Let Φ(x,m0) define ν−1(H).
So Φ(x, y) → EKP (x, y), and EL(x, y) → Φ(x, y) (on realizations of tp(m0)).
As H is a subgroup of GalL(T ) we see that Φ(x, y) is an equivalence relation,
so has to be EKP . Thus H = H1.

Proposition 2.4 Let C ⊆ GalL(T ). Suppose that q ∈ ν−1(C) and ν(p) =
ν(q). Then for any realization n of p there is n′ such that
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(i) (n, n′) begins an indiscernible sequence (namely Θ(n, n′) holds) and
(ii) tp(n′/m0) ∈ ¯ν−1(C).

Proof. Let m realize q. By the assumption on q there is a set I, an ultrafilter
U on I and qi ∈ Sm0(m0) for i ∈ I, such that ν(qi) ∈ C for all i ∈ I, and q
is the ultraproduct via U of the qi. Let mi realize qi such that tp(mi/m,m0)
is finitely satisfiable in M0. As ν(p) = ν(q) there is, by Remark 2.2(i),
some g ∈ AutfL(M) such that g(m) = n. Let ni = g(mi) (i ∈ I). The
ultraproduct with respect to U of {tp(m,mi, n, ni,m0) : i ∈ I} can be realized
by (m,m′, n, n′,m0) for some m′, n′ in M̄ . We have, by the assumptions:
(a) tp(m′/m0) = q.
(b) tp(m′/m,m0) is finitely satisfiable in M0.
(a) and (b) imply
(c) (m,m′) begins an indiscernible sequence.
As tp(n, ni) = tp(m,mi) for all i, we see that tp(n, n′) = tp(m,m′) and so by
(c),
(d) (n, n′) begins an indiscernible sequence.
By Remark 2.2, ν(tp(ni/m0)) ∈ C for all i, whereby
(e) tp(n′/m0) ∈ ¯ν−1(C).
(d) and (e) give the desired conclusion.

Corollary 2.5 Let C ⊆ GalL(T ). Then C̄ = ν(ν−1(C)).

Proof. Clearly C̄ contains ν(ν−1(C)), so it suffices to show that the latter is
closed, that is, its preimage, X say, is closed in Sm0(m0). Let Ψ(x,m0) be
the partial type defining ν−1(C). By Proposition 2.4, X is the closed subset
of Sm0(m0) defined by:
∃y(Θ(x, y) ∧Ψ(y,m0)).

Let X be a ∅-type-definable set (of possibly infinite tuples). EX
L denotes

the closure of EX
L in the space of complete types p(x, y) over ∅ extending

x ∈ X ∧ y ∈ X. If X is the set of realizations of a complete type p, we
notationally replace X by p.

Corollary 2.6 For any complete type p(x) over ∅, and realizations a, b of p.
EKP (a, b) iff there is some c such that Θ(a, c) and Ep

L(c, b). In particular, on
realizations of p, EKP is the composition of EL with Ep

L.
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Proof. It is enough to prove this where p = tp(m0). Suppose EKP (a, b)
where a, b are realizations of p. We may assume that b = m0. By 2.3(iii),
ν(tp(a/m0)) is in the closure of the identity in GalL(T ). By Proposition 2.4,
there is c such that Θ(a, c) holds and tp(c/m0) is in the closure of the set of
tp(c′/m0) where c′ realises p and EL(c′,m0). So Ep

L(c,m0).

Various examples will be given in section 4 which answer some obvious “qual-
itative” questions: such as can EKP 6= EL, can EKP 6= EL? etc. But many
questions remain (regarding GalL(T ) and EL). Let us suppose T to be count-
able. What are the possible cardinalities of GalL(T ), of the kernel K(T ) of
GalL(T ) → GalKP (T ) and of the set of EL-classes in a given EKP -class? As,
by Remark 2.2, GalL(T ) is the quotient of the Polish space Sm0(m0) by the
Borel equivalence relation E : ν(p) = ν(q), by well-known results, CH holds
for the cardinality of GalL(T ). Similarly for the other questions. For exam-
ple, let X be the subspace of Sm0(m0) consisting of those tp(m/m0) such that
EKP (m,m0). Then X is a Polish space and K(T ) is the quotient of X by
E|X. Maybe the right question to ask is what can be the “Borel cardinality”
(in the sense of [3]) of this E|X. We would like to conjecture that it is very
complicated (if nontrivial). A possibly related question is: Suppose Y is a
KP -class and EL is trivial on Y (so Y is also an EL-class). Does it follow
that there is a finite bound on the d(a, b) for a, b ∈ X?

3 Products and Galois groups.

The examples in section 4 will involve (elaborations of) infinite products of
structures. We find it worthwhile to give some generalities about products
of structures and the effect on the Galois groups GalKP and GalL.

Let (Mi : i ∈ I) be a family of structures in disjoint languages Li. We
assume for simplicity that these are 1-sorted structures. By the disjoint sum
or coproduct

∐
i Mi of this family we mean the family (Mi : i ∈ I) considered

as a many-sorted structure. That is, the sorts are labelled by the elements
of I, the ith sort is Mi equipped with all its Li-structure, and there are
no additional relations or functions. By the product

∏
i Mi we mean the

structure M whose universe is the set of sequences (ai)i∈I where ai ∈ Mi

for each i, equipped with, for each i ∈ I, the equivalence relation Ei of
having the same ith coordinate, and also equipped with all the Li structure
on M/Ei = Mi (all i). We emphasize that M denotes both the structure
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∏
i Mi as well as its underlying set.

If the Mi are all saturated, then so is
∐

i Mi. If I is finite, then
∐

i Mi

is bi-interpretable with
∏

i Mi. In fact it is convenient in this case (I finite)
to identify both structures with the structure (M,Mi, fi)i where fi is the
projection map from M to M/Ei = Mi.

If I is infinite
∏

i Mi is still bi-interpretable with (M, Mi, fi)i. However,
even if the Mi are all saturated,

∏
i Mi will not be saturated, unless it is

finite. Let E be the intersection of the Ei (so type-definable). In
∏

i Mi each
equivalence class of E is a singleton. Adjoining a suitably large number of
elements to each E-class yields a saturated elementary extension of

∏
i Mi,

which we call (
∏

i Mi)
∗ or M∗. If I or M is finite we set M∗ = M . Note that

in passing to M∗ no new elements were added to any of the sorts Mi, and
that

∐
i Mi is interpretable in M∗.

From now on we assume that each Mi is saturated and we stick with
notation above.

Remark 3.1 (i) Aut(
∐

i Mi) is precisely the product of the Aut(Mi).
(ii) The canonical map from Aut(M∗) to Aut(

∐
i(Mi)) is surjective.

(iii) Let X ⊂ Mi1× ..×Min be definable in the structure M∗ with parameters
from some Mj’s where j 6= i1, .., in. Then X is already ∅-definable in the
coproduct (or product) of Mi1,..,Min.

Corollary 3.2 (i) EL on (even infinite tuples from)
∐

i Mi is the same in
the structure M∗ as in the structure

∐
i Mi.

(ii) Similarly for EKP .
(iii) Fix i0 ∈ I, and let c be a finite tuple from some other Mj’s (j 6= i0).
Then EL and EKP on Mi0 in the sense of the structure (

∐
i Mi, c) is the same

as in the sense of the structure Mi0.

Proof. Immediate.

Lemma 3.3 Suppose I is finite.
(i) For a, b ∈ M (the universe of

∏
i Mi). EL(a, b) iff EL(fi(a), fi(b)) (in Mi

for each i).
(ii) Similarly for EKP .

Proof. By induction it is enough to look at the case where |I| = 2.
We give a proof for EKP which also works for EL (although the EL case is
immediate from Fact 1.13).
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So now M = M∗ is the product of M1 and M2. Suppose a, b ∈ M . Let
fi(a) = ai ∈ Mi for i = 1, 2 and likewise fi(b) = bi. Suppose that EKP (ai, bi)
in Mi for i = 1, 2. We must show that EKP (a, b) in M . By (iii) of Corollary
3.2, EKP (a1, b1) in the sense of M . So by Fact 1.4 there is f ∈ AutfKP (M)
such that f(a1) = b1. Let a′2 = f(a2). So EKP (a2, a

′
2) in the sense of M and

so also of M2. Thus EKP (a′2, b2) in the structure M2. By (iii) of Corollary 3.2
again there is g ∈ AutfKP (M, b1) such that g(a′2) = b2. So g ·f ∈ AutfKP (M)
and takes a to b, thus EKP (a, b) in M .

Remark 3.4 So for I finite one sees (generalizing the above to finite tuples)
that AutfKP (M) is the product of the AutfKP (Mi) and even GalKP (M) is
isomorphic to the product of the GalKP (Mi) as topological groups.

We now consider the case where I is possibly infinite. Let us call a
subset X of the underlying set M of

∏
i Mi dense if for any i1, .., in ∈ I and

aij ∈ Mij for j = 1, .., n there is x ∈ X such that fij(x) = aij for j = 1, .., n.
The following is easy.

Lemma 3.5 Any dense subset of M is the underlying set of an elementary
substructure of M (and also of M∗).

Lemma 3.6 Suppose that a, b ∈ M∗ and E(a, b). Then EL(a, b), in fact a
and b have the same type over some model.

Proof. We may assume I to be infinite. Choose an automorphism α of M∗

which maps a to b and fixes all other E-classes pointwise. The set of elements
fixed by α is an elementary submodel by the last lemma.

Lemma 3.7 (I arbitrary.) (i) Let ai, bi ∈ Mi for all i. Then EL((ai)i∈I , (bi)i∈I)
in M∗ iff there is n < ω such that d(ai, bi) ≤ n for all i ∈ I.
(ii) Let a, b ∈ M∗. Then EL(a, b) iff there is n < ω such that d(fi(a), fi(b)) ≤
n for all i ∈ I.
(iii) For a, b ∈ M∗, EKP (a, b) (in M∗) iff EKP (fi(a), fi(b)) in Mi for all
i ∈ I.

Proof. (i) By Corollary 3.2, we make work in the structure
∐

i Mi. The
assertion then follows immediately from Fact 1.13.
(ii) Note that E(a, (fi(a))i∈I) and similarly for b. So, by Lemma 3.6, (ii) is
an immediate consequence of (i).
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(iii) Left implies right is clear. Now suppose the right-hand side holds. Let
ai = fi(a). By Lemma 3.3, for each finite J ⊆ I,
(*) EKP ((ai)i∈J , (bi)i∈J)
in the sense of structure

∐
i∈J Mi. By Corollary 3.2 (iii) for each finite J , (*)

holds in the sense of the structure
∐

i∈I Mi. By Fact 1.7,
(**) EKP ((ai)i∈I , (bi)i∈I)
holds in the sense of

∐
i∈I Mi. By Corollary 3.2 (ii), (**) holds in the structure

M∗. As in the proof of (ii), we deduce, that EKP (a, b) in M∗.

Corollary 3.8 Suppose that I = ω. Suppose moreover that there are i1 <
i2 < .... and aiN , biN ∈ MiN for each N such that EL(aiN , biN ) but d(aiN , biN ) >
N in MiN . Then
(i) On (the underlying set of) M∗, EL 6= EKP . Moreover some EKP class
splits into continuum many EL classes.
(ii) In

∐
i Mi, AutfL is not closed in the full automorphism group. There is

an EKP class of infinite tuples (ai)i (ai ∈ Mi) which splits into continuum
many EL-classes.

Proof.(i) We can find some X ⊂ 2ω of size continuum such that if η 6= ν ∈ X
then for arbitrarily large N , η(N) 6= ν(N). Define elements cη ∈ M∗ or even
in M for η ∈ X as follows: if η(N) = 0 then fiN (cη) = aiN , if η(N) = 1,
fiN (cη) = biN and for j different from all iN , fj(cη) is some fixed element of
Mj. By the above lemma, we have in M∗ that EKP (cη, cν) for all η, ν ∈ X,
but for distinct η, ν, cη and cν are in different EL-classes.
(ii) Similar.

4 Examples

By Corollary 3.8, to find an example where EKP 6= EL and where AutfL is
not closed, we only have to find structures Mi for i < ω as in the hypothesis
of 3.8. We proceed to do this now.

We will define structures Mn for n = 1, 2, .... Let n ≥ 1. Mn will be the
structure whose universe is the circle of centre the origin, and radius 1 say
(in a saturated real-closed field), equipped with a ternary relation Sn and a
unary function gn. Sn is the “circular order”: Sn(a, b, c) holds just if a, b, c
are distinct and b comes before c going around the circle clockwise starting
at a. gn is rotation (clockwise) by 2π/n radians. Note that gn is a bijection,
(gn)n is the identity, and for any a, Sn(a, x, y) is a dense linear ordering on

13



Mn \ {a}. We will call a subset X of Mn dense if for all a 6= c ∈ X there is
b ∈ X with Sn(a, b, c). (Hopefully there will be no confusion with denseness
as defined before 3.5.) Note also that any finitely generated substructure is
finite. In fact the substructure generated by {a1, .., ak} is precisely {gj

n(ai) :
i = 1, .., k, j = 0, .., n − 1}. It will be convenient later to let Rn denote the
binary (symmetric) relation : x = y ∨ Sn(x, y, gn(x)) ∨ Sn(y, x, gn(y)) (so
meaning that the shortest arc joining x and y has length < 2π/n).

Lemma 4.1 (i) Th(Mn) has a unique 1-type over ∅.
(ii) Let a ∈ Mn, and let Ia = {x ∈ Mn : Sn(a, x, gn(a))}. For x, y ∈ Ia,
write x < y iff Sn(a, x, y). (So (Ia, <) is a dense linear ordering with no
first or last element.) Then there is a natural 1− 1 correspondence between
partial isomorphisms between finite tuples in (Ia, <) and partial isomorphisms
between finite substructures in (Mn, a): if b̄, c̄ are finite tuples in Ia with the
same quantifier-free type in (Ia, <) then (b̄, gn(b̄), .., (gn)n−1(b̄)) has the same
quantifier-free type as (c̄, gn(c̄), .., (gn)n−1(c̄)) in (Mn, a).

Proof. (i) In the elementary substructure Mn(R) of Mn, rotation by r degrees
(any r) is an automorphism. So there is a unique 1-type realised in Mn(R),
so Th(Mn) has a unique 1-type.
(ii) Easy.

Proposition 4.2 (i) Th(Mn) has quantifier-elimination.
(ii) X ⊆ Mn is an elementary substructure of Mn just if X is a substructure
(i.e. closed under gn) and X is dense.

Proof. (i) We do back-and-forth in Mn. Let (a1, ...ak), (b1, .., bk) have the
same quantifier-free type. Given c we want d such that (a1, .., ak, c) and
b1, .., bk, d) have the same quantifier-free type. By Lemma 4.1(i), we may
assume that a1 = b1 = a. We may assume that the tuple of ai’s enumerates
a substructure. By relabelling we may assume that this substructure is gen-
erated by (a, a2, .., ar) where ai ∈ Ia for i = 2, .., r. Now (a2, .., ar) has the
same quantifier-free type as (b2, .., br) in Ia. Replacing c by some (gn)j(c) we
may assume c ∈ Ia. So we find d ∈ Ia such that (a2, .., ar, c) has the same
quantifier-free type as (b2, .., br, d) in Ia. By Lemma 4.1(ii), (a2, ., ar, c) and
(b2, .., br, d) have the same quantifier-free type in (M, a) which is enough.
(ii) Left implies right is clear. Right implies left: Working over a given finite
tuple from X the back-and-forth argument above still works even if we also
require that the first player always chooses in X. So X is an elementary
substructure.
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Corollary 4.3 Let a, b ∈ Mn. Then a and b have the same type over some
elementary substructure of Mn if and only if Rn(a, b).

Proof. Suppose first that Rn(a, b), and we may assume that Sn(a, b, gn(a)).
Let X be the substructure of Mn generated by {c ∈ Ia : b < c}. By Proposi-
tion 4.2(ii), X is an elementary substructure of Mn and tp(a/X) = tp(b/X).
Conversely, suppose ¬Rn(a, b). Let N be any elementary substructure of
Mn. Let c ∈ N . Then for some 0 ≤ i, j < n we have Sn(a, (gn)i(c), b) and
Sn(b, (gn)j(c), a), whereby Sn((gn)i(c), b, (gn)j(c)) but ¬Sn((gn)i(c), a, (gn)j(c))
so a and b have different types over N .

We immediately obtain:

Corollary 4.4 EL (and so EKP ) is trivial on (the universe of) Mn. On the
other hand there are a, b ∈ Mn such that d(a, b) > n/2.

Let M∗ be the saturated structure built from the Mn as in the previous
section. From Corollary 4.4, Lemma 3.7, and Corollary 3.8 we obtain:

Proposition 4.5 Neither Th(M∗) nor Th(
∐

n Mn) are G-compact. EKP is
trivial on the underlying set of M∗ but there are continuum many EL-classes
on this set. In

∐
n Mn, AutfL is not closed in the full automorphism group.

The “space” of Lascar strong 1-types in M∗ has a rather easy represen-
tation. It is the space (S1)

ω quotiented by the Borel equivalence relation
F , where F ((ai)i, (bi)i) holds iff there is m such that for each n the length
of the shortest arc between an and bn is less than m/n. F appears to be
substantially more complicated, in the sense of Borel cardinalities, than the
Borel equivalence relation E1, eventual agreement on countable sequences of
reals. Again we would suppose this to be the case for any example produced
using Corollary 3.8.

We now modify the above example to give an example where EKP is not EL,
showing that Corollary 2.6 is best possible.

We consider again the circles Mn mentioned at the end of section 2, but
we now take M to be

∏
(Mn : n even). Clearly the previous analysis still

goes through. Recall that fn is the projection map from M to Mn. Now
define a new binary function h on M : for a ∈ M , h(a) is the unique element
b ∈ M such that fn(b) = (gn)n/2(fn(a)) for all n (that is, fn(a) and fn(b)
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are “antipodal” in Mn for all n). Note that no new structure is added to
any Mn. Let N be the structure (M, h). Note that h is an involution, and
is an automorphism of M , ∅-definable on each Mn. Let N∗ be the saturated
elementary extension M∗ of M described in section 3, equipped with an
extension of h which establishes a bijection between the E-class of a and the
E-class of b (whenever h(a) = b in N). By a back and forth argument N∗ is
a saturated elementary extension of N . As before the many-sorted saturated
structure

∐
n Mn is interpretable in N∗.

Lemma 4.6 The canonical map from Aut(N∗) to Aut(
∐

n Mn) is surjective.

Proof. Clear.

We conclude:

Lemma 4.7 EL in the sense of N∗ on infinite tuples (an)n (where an ∈ Mn)
is the same as in the sense of

∐
n Mn. Likewise for EKP . In particular, EKP

is trivial on such infinite tuples in the structure N∗.

Lemma 4.8 Let a, b ∈ N∗ (namely in the home sort) be such that E(a, b).
Then there is an elementary substructure of N∗ (even of N) over which a
and b have the same type.

Proof. Choose a small dense subset X of N which is closed under h and
does not meet the E-class of a. Then X is an elementary submodel and
tp(a/X) = tp(b/X).

As in Lemma 3.7, we conclude

Lemma 4.9 Both EL and EKP on the home sort in N∗ agree with the cor-
responding relations in the reduct M∗. In particular EKP is trivial.

Lemma 4.10 The formula h(x) 6= y is in EL in N∗.

Proof. If EL(a, b) then for some n, (gn)n/2(fn(a)) 6= fn(b) in the circle Mn.
So h(a) 6= b.

We conclude

Proposition 4.11 In N∗, EL is properly contained in EKP (on the home
sort)
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The final example is one of a complete type p(x) in a sort S such that

Ep
L 6= ES

L |p. Infinite products enter the picture again, but only “at infinity”.
We will describe a many-sorted structure W . It will be convenient to put in∐

(Mn : n even) at the beginning (Mn the circles as above). So the sorts will
be the Mn for n even together with another sort S say. S will be a disjoint
union of predicates Pn (n even), where Pn is (in bijection with the underlying
set of) M2 ×M4 × ... ×Mn. We also give ourselves projection functions fi,
i even (as part of the structure). fi is defined only on those Pn for n ≥ i,
and takes (a2, a4, .., an) ∈ Pn to ai ∈ Mi. (Formally we could instead add
the graph of fi as a relation.) So far we have defined a structure W0 say.
Let us say a few words about this structure before continuing. Let p(x) be
the type in sort S which says {¬Pn(x) : n < ω}. p is a complete type. fi

is defined on all of p. Let E be the (type-definable) equivalence relation on
p: fi(x) = fi(y) for all i. A saturated elementary extension (W0)

∗ can be
obtained by adding realizations of p, a suitable number in each E-class. The
set of realizations of p in (W0)

∗ is essentially the structure M∗ from section
2. On elements (or finite tuples) from the base model W0, EL is trivial. On
realizations of p, EL is as in M∗. EKP is trivial on W ∗

0 .
We will add a function h to W0 to obtain W . h is a function from S to

S: Suppose a ∈ Pn. Then h(a) is the unique b ∈ Pn such that for each even
i ≤ n, fi(b) = (gi)

i/2(fi(a). Extend h to W ∗
0 by making it a bijection between

E-classes X and Y whenever for some (any)x ∈ X, y ∈ Y , fi(y) = g
i/2
i (fi(x))

for all (even) i. We obtain a structure W ∗. We leave it to the reader to check
that W ∗ is a saturated elementary extension of W , and that p(x) remains a
complete type in Th(W ∗).

As in the previous examples we have:

Fact 4.12 (i)
∐

n Mn has no more induced structure in W ∗.
(ii) For a, b realizing p(x), E(a, b) implies a and b have the same type over
some model.

From this fact, we see as before that on p(x), EL(a, b) holds if and only if
for some n, d(fi(a), fi(b)) ≤ n for all i. It follows that the formula h(x) 6= y
is in Ep

L. (Note also that EKP is trivial on p(x).) On the other hand on each
predicate Pn, EL is trivial. So if an, bn ∈ Pn with h(an) = bn for each n, then
any limit of tp(an, bn)n will be in EL|p and will contain the formula h(x) = y.
Thus

Proposition 4.13 In the structure W ∗, Ēp
L 6= ĒL|p.
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