Finite covers of disintegrated sets

Martin Ziegler

January 1992

1 Introduction

Let X be structure. A 2-sorted structure $\overline{E} = (E, X)$ is a finite cover of X if

- 1. there is 0-definable surjection $\pi: E \to X$ whose fibers $E_x = \pi^{-1}(x)$ have a bounded finite cardinality
- 2. There is no new structure induced on X, i.e. every in \overline{E} 0-definable relation on X is 0-definable in X.

In this note we determine what the finite covers are in the simplest of all cases: where X is a countable set without structure, a disintegrated set.

Remark 1.1 Let \overline{E} be a finite cover of X. Since \overline{E} is algebraic over X every automorphism of X extends to an automorphism of \overline{E} . This shows that a finite cover of an ω -categorical structure is also ω -categorical.

Since countable ω -categorical structures are - up to interdefinability - determined by their automorphism groups we will instead of giving the actual structures of the finite covers give their automorphism groups.

The following lemma is easy to prove.

Lemma 1.2 A permutation group G on $E \cup X$ is the automorphism group of a finite cover of X if the following conditions are satisfied:

- 1. G is a closed subgroup of $\text{Sym}(E \cup X)$
- 2. Every element of G respects the fibration π .
- 3. Every permutation of X is induced by an element of G.

The kernel of a finite cover \overline{E} is the set of all automorphisms σ which leave X pointwise fixed i.e. $\operatorname{Aut}(\overline{E}/X)$. All reducts \overline{E}' of \overline{E} which are also finite covers are determined solely by their kernel K'. For one computes easily that $\operatorname{Aut}(\overline{E}') = \operatorname{Aut}(\overline{E})K'$.

Let F be a set with f_0 elements. We make $(F \times X, X)$ to a finite covering by adding the natural projection $\pi : F \times X \to X$ and for every $f \in F$ a predicate for the set $\{(f, x) \mid x \in X\}$. We denote this structure by $F \times X$. The reducts of $F \times X$ (and the covers sets isomorphic to such reducts) are called *splitting* covers. Splitting covers are determined by their kernels. One sees easily that this are exactly the closed subgroups of $\prod_{x \in X} \text{Sym}(F)$ which are invariant under conjugation with elements of $id \times \text{Sym}(X)$.

In the next section we will prove that all finite covers of the disintegrated set split. In the last section we determine the kernels of the splitting covers.

2 The covers split

Let $\overline{E} = (E, X)$ be a finite cover of X. For subsets A of X let E_A denote the union of the fibers above A i.e. $\pi^{-1}(A)$.

Lemma 2.1 Let A be a subset of X. Then E_A and X are orthogonal over A in the sense that

$$\operatorname{tp}(E_A/A) \vdash \operatorname{tp}(E_A/X)$$

Proof:

We can assume that A is finite. Then by restriction the finite group $\operatorname{Aut}(E_A/A)/\operatorname{Aut}(E_A/X)$ is a homomorphic image of $\operatorname{Aut}(E/A)/\operatorname{Aut}(E/X)$, which is again by restriction isomorphic to $\operatorname{Aut}(X/A) \cong \operatorname{Sym}(X \setminus A)$. But an infinite symmetric group has no non-trivial finite quotients. Whence $\operatorname{Aut}(E_A/A) = \operatorname{Aut}(E_A/X)$, which we had to show: two tuples from E_A which are conjugate over A are conjugate over X.

This is just a group-proof of a more general fact: Let \overline{E} be a finite cover of a strongly minimal set X. If X weakly eliminates imaginairies and A is an algebraically closed subset of X then E_A and X are orthogonal over A.

Corollary 2.2 Let $\sigma \in \text{Sym}(X)$ have support *B*. Then σ can be extended to $\bar{\sigma} \in \text{Aut}(E)$ which is the identity on $E_{X \setminus B}$.

Proof: Since both X and E_A are \bigwedge -definable over A

$$\operatorname{tp}(E_A/A) \vdash \operatorname{tp}(E_A/X)$$

is equivalent to

$$\operatorname{tp}(X/A) \vdash \operatorname{tp}(X/E_A).$$

This, applied to $A = X \setminus B$ proves the assertion.

Lemma 2.3 For all $a \neq b \in X$ there is a $\sigma_{ab} \in Aut(E)$ such that

- 1. σ_{ab} induces the transposition (ab) on X,
- 2. σ_{ab} fixes $E_{X \setminus \{ab\}}$ pointwise,
- 3. $\sigma_{ab}^2 = id$

Proof:

By the corollary choose τ_{ab} which satisfies 1 and 2. Then $\rho = \tau_{ab}^2$ leaves everything fixed except possibly E_a and E_b . If we conjugate ρ by τ_{bc} we obtain an automorphism ρ_c which leaves everything fixed except possibly E_a and E_c . Furthermore ρ_c agrees with ρ on E_a . If we fix a and b and let c tend to infinity the sequence (ρ_c) will converge to an automorphism σ which agrees with ρ on E_a and is the identity else. Now set $\sigma_{ab} = \sigma^{-1}\tau_{ab}$

Theorem 2.4 Every finite cover of a disintegrated set splits

Proof:

We have to prove that there is a bijection between \overline{E} and $F \times X$ which respects the fibration and such that every 0-definable relation of \overline{E} is mapped to a 0-definable relation of $F \times X$ i.e. every automorphism of $F \times X$ is the image of an automorphism of \overline{E} . This amounts to finding a family $(\beta_x)_{x \in X}$ of bijections $\beta_x : F \to E_x$ such that every permutation σ of X can be lifted to an automorphism $\bar{\sigma}$ of \bar{E} such that every diagram

commutes. Fix an element $a \in X$ and a bijection $\beta_a : F \to E_a$. Now chose for every $b \neq a$ the bijection $\beta_b : F \to E_b$ in such a way that the diagram above commutes for $\sigma = (ab)$, $\bar{\sigma} = \sigma_{ab}$ and x = a. But then the diagram commutes for all $x \in X$. This is clear if $x \neq b$ and follows from $\sigma_{ab}^2 = id$ if x = b. If $\sigma \in \text{Sym}(X)$ has finite support it can be written as a product of transpositions (ab_i) . If we define $\bar{\sigma}$ to be product of the σ_{ab_i} the diagram commutes. Finally if σ is the limit of permutations σ_i of finite support let $\bar{\sigma}$ be an accumulation point of the $\bar{\sigma}_i$.

3 The kernels

Finally we determine the possible kernels of finite covers of disintegrated sets. Since all covers split this is done by the following theorem:

Theorem 3.1 The closed subgroups K of $\prod_{x \in X} \operatorname{Sym}(F)$ which are invariant under conjugation with elements of $id \times \operatorname{Sym}(X)$ are exactly the groups of the form

$$K_{H}^{G} = \{ \alpha \in \prod_{x \in X} G \mid \forall x, y \, \alpha_{x} H = \alpha_{y} H \}$$

where G is a subgroup of Sym(F) and H is a normal subgroup of G.

Proof:

Clearly all groups K_H^G are closed and invariant under conjugation with elements of $id \times \text{Sym}(X)$. Let conversely K be a group with this property. Fix $a \in X$ and set

$$G = \{\sigma_a \mid \sigma \in K\}$$

and

$$H = \{ \alpha \mid \exists \sigma \in K \ \sigma_a = \alpha \land \forall x \neq a \ \sigma_x = id \}.$$

We will prove that $K = K_H^G$.

Let σ be an element of K. For each $x \in X$ the *a*-component of $\sigma^{(ax)}$ is σ_x . This shows that all σ_x lie in G. If x and y are given the components of the commutator $\kappa = [\sigma, (xy)]$ are $\sigma_x \sigma_y^{-1}$ at x, $\sigma_y \sigma_x^{-1}$ at y and the identity everywhere else. The limit $\tau = \lim_{z \to \infty} \kappa^{(yz)}$ is an element of K whose components are the identity except that $\tau_x = \sigma_x \sigma_y^{-1}$. Then $\tau^{ax} \in K$ shows that $\sigma_x \sigma_y^{-1} \in H$. For the converse we remark first that by conjugation G and H do not depend on the choice of

For the converse we remark first that by conjugation G and H do not depend on the choice of a. This implies immediately that $\prod_{x \in X} H$ is contained in K. If now σ is an arbitrary element of K_H^G choose an element τ of K such that $\sigma_a = \tau_a$. Since all σ_x and all τ_x (by the first part of the proof) are congruent mod H to $\sigma_a = \tau_a$ the quotient $\sigma \tau^{-1}$ belongs to $\prod_{x \in X} H$. This shows $\sigma \in K$.