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The purpose of this note is to give a proof of a remark! in [1]:

Theorem 1. Every w-saturated strict D—field has a canonical p—basis.

I will use the definitions and notation of [1]. As there, all fields have char-
acteristic p. We start the proof with a couple of Lemmas.

In our application the following lemma, except of its last sentence, can be
replaced by Lemma 3.

Lemma 2. Let K be a field, dy,...,d. be a sequence of commuting derivations
of K, and C = C1N---NC,, where C; is the field of constants of d;. Assume
that

a) &l =0 fori=1,...,e
b) (K:C)=p

Then there are elements by, ..., b such that d;(b;) = 0; ;. Each such sequence
generates K over C.

Proof. The proof of [1, Lemma 2.1] shows that, for every i, C is a proper subfield
of F; = (), Cj, which is closed under d;. Choose b; € F; with d;(b;) = 1.
Consider the sequence

K=ByD>DBiD>:--+-D>B.=C,
where B; = C1 N ---NC;. b; generates B;_1 over B;, so C(by,...,b.) =K. O

Note that K? C C. If C' = KP, the b; form a p-basis of K.

Lemma 3. Let K and dy,...,d. as in Lemma 2. For any sequence x1,...,T,
of elements of K the following are equivalent:

1. Thereis ay € K such that d;(y) = x; fori=1,... e.
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2. a) d’(z;) =0 for all i.
b) di(z;) =d;j(x;) foralli,j.

Proof. That 1 implies 2 is clear. We prove the converse by induction on e.

Case e = 1:

d = dy is a C-linear map, its kernel has dimension 1. This implies that the
dimension of d(K) is p — 1 and the dimension of ker d?~! at most p — 1. Since
d(K) C ker d?~1, we have d(K) = ker dP~!.

Case e > 1:

Since (K : C.) = p, we can apply the first case to obtain an element z € K
with d.(z) = x.. Set ) = z; — d;(2). The z again satisfy our assumption.
They belong to Ce, since d(z}) = d;(«,) = d;(0) = 0. We apply the induction
hypothesis to C., with derivations dy,...,de_1, and x},...,z._;. This gives us
ay’ € Cesuchthat d;(y') =af fori=1,...,e—1. Finally weset y =y’ +2. O

Lemma 4. Let K be a strict D—field and n > 0. Assume that we have an
element a such that for all m <n

DipnDjpm(a) =0 (1)
for alli,j. Then there is an @’ in K such that for all j Dj pn(a’) =0 and
D, () = Dy (0)
for all m < n.
Proof. Set x; = D; pn(a). If we can find a y in
F={z2€ K |Djm(z)=0, for all j and all m < n} = K?"
such that D; ,» (y) = x; for all 4, a’ = a — y will do the job.
We observe first, that the z; belong to F, because for all j and m <n
Djpma; =DjpmDipn(a) = DiprDjpm(a) = 0.

The field F' together with the derivations D; ,» satisfies the conditions of Lemma 3.
So it remains only to check the conditions on the z;:

-1
D]z?,p" (.131) = D?an (G) = 0
D pn(zj) = DjpnDjpn(a) = DjpnDj pn(a) = Dy pn ()

O

Proof of Theorem 1: Let K be a strict D—field and n a natural number.
Choose a p-basis b1,...,b. by Lemma 2 such that D;;(b;) = J; ;. Now for
every 1, if we start with a = b; and apply Lemma 4 n-times, we get an element



b; such that for all 0 < m < n D, ,m(b}) = 0 and D;1(b}) = D, 1(b;) for all j.
(Note that (1) holds trivially, since all D, ,m (a) are 0 or 1.)

The b, form a canonical p-basis “of depth p"*1”  i.e. we have for all 0 <
m < pn+1
1 ifm=1landi=j
0 otherwise '

Di,m(b;’) = {
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