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The purpose of this note is to give a proof of a remark1 in [1]:

Theorem 1. Every ω–saturated strict D–field has a canonical p–basis.

I will use the definitions and notation of [1]. As there, all fields have char-
acteristic p. We start the proof with a couple of Lemmas.

In our application the following lemma, except of its last sentence, can be
replaced by Lemma 3.

Lemma 2. Let K be a field, d1, . . . , de be a sequence of commuting derivations
of K, and C = C1 ∩ · · · ∩ Ce, where Ci is the field of constants of di. Assume
that

a) dp
i = 0 for i = 1, . . . , e

b) (K : C) = pe

Then there are elements b1, . . . , be such that di(bj) = δi,j. Each such sequence
generates K over C.

Proof. The proof of [1, Lemma 2.1] shows that, for every i, C is a proper subfield
of Fi =

⋂
j 6=i Cj , which is closed under di. Choose bi ∈ Fi with di(bi) = 1.

Consider the sequence

K = B0 ⊃ B1 ⊃ · · · ⊃ Be = C,

where Bi = C1 ∩ · · · ∩ Ci. bi generates Bi−1 over Bi, so C(b1, . . . , be) = K.

Note that Kp ⊂ C. If C = Kp, the bi form a p–basis of K.

Lemma 3. Let K and d1, . . . , de as in Lemma 2. For any sequence x1, . . . , xe

of elements of K the following are equivalent:

1. There is a y ∈ K such that di(y) = xi for i = 1, . . . , e.
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2. a) dp−1
i (xi) = 0 for all i.

b) di(xj) = dj(xi) for all i, j.

Proof. That 1 implies 2 is clear. We prove the converse by induction on e.

Case e = 1:
d = d1 is a C-linear map, its kernel has dimension 1. This implies that the
dimension of d(K) is p− 1 and the dimension of ker dp−1 at most p− 1. Since
d(K) ⊂ ker dp−1, we have d(K) = ker dp−1.

Case e > 1:
Since (K : Ce) = p, we can apply the first case to obtain an element z ∈ K
with de(z) = xe. Set x′i = xi − di(z). The x′i again satisfy our assumption.
They belong to Ce, since de(x′i) = di(x′e) = di(0) = 0. We apply the induction
hypothesis to Ce, with derivations d1, . . . , de−1, and x′1, . . . , x

′
e−1. This gives us

a y′ ∈ Ce such that di(y′) = x′i for i = 1, . . . , e−1. Finally we set y = y′+z.

Lemma 4. Let K be a strict D–field and n > 0. Assume that we have an
element a such that for all m < n

Di,pnDj,pm(a) = 0 (1)

for all i, j. Then there is an a′ in K such that for all j Dj,pn(a′) = 0 and

Dj,pm(a′) = Dj,pm(a)

for all m < n.

Proof. Set xi = Di,pn(a). If we can find a y in

F = {z ∈ K | Dj,pm(z) = 0, for all j and all m < n} = Kpn

such that Di,pn(y) = xi for all i, a′ = a− y will do the job.

We observe first, that the xi belong to F , because for all j and m < n

Dj,pmxi = Dj,pmDi,pn(a) = Di,pnDj,pm(a) = 0.

The field F together with the derivations Di,pn satisfies the conditions of Lemma 3.
So it remains only to check the conditions on the xi:

Dp−1
i,pn(xi) = Dp

i,pn(a) = 0

Di,pn(xj) = Di,pnDj,pn(a) = Dj,pnDi,pn(a) = Dj,pn(xi)

Proof of Theorem 1: Let K be a strict D–field and n a natural number.
Choose a p–basis b1, . . . , be by Lemma 2 such that Di,1(bj) = δi,j . Now for
every i, if we start with a = bi and apply Lemma 4 n-times, we get an element
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b′i such that for all 0 < m ≤ n Dj,pm(b′i) = 0 and Dj,1(b′i) = Dj,1(bi) for all j.
(Note that (1) holds trivially, since all Dj,pm(a) are 0 or 1.)

The b′i form a canonical p–basis “of depth pn+1”, i.e. we have for all 0 <
m < pn+1

Di,m(b′j) =

{
1 if m = 1 and i = j

0 otherwise
.
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