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Abstract

Let T1 and T2 be two countable strongly minimal theories with the
DMP whose common theory is the theory of vector spaces over a fixed
finite field. We show that T1 ∪ T2 has a strongly minimal completion.

1 Introduction

In [1] E. Hrushovski answered negatively a question posed by G. Cherlin about
the existence of maximal strongly minimal sets in a countable language by
constructing the fusion of two strongly minimal theories:

Theorem. Let T1 and T2 be two countable strongly minimal theories, in disjoint
languages, and with the DMP, the definable multiplicity property. Then T1∪T2

has a strong minimal completion.

The above theorem was proved by extending Fräıssé’s amalgamation pro-
cedure to a given class in which Hrushovski’s “δ–function” will determine the
pregeometry. In order to axiomatize the theory of the generic model, a set of
representatives of rank 1 types or “codes” is chosen in a uniform way.

From now on, let F denote a fixed finite field and T0 the theory of infinite
F–vector spaces in the language L0 = {0,+,−, λ}λ∈F . In this article, we will
prove the following:

Theorem 1.1. Let T1 and T2 be two countable strongly minimal extensions of
T0 with the DMP, and assume that their languages L1 and L2 intersect in L0.
Then T1 ∪ T2 has a strongly minimal completion Tµ.

This “fusion over a vector space” was proposed by Hrushovski in [1]. In the
special case where both T1 and T2 are 1–based this fusion was already proved
by A. Hasson and M. Hils [2]. These two articles also discuss fusions over more
general T0.

Our proof uses Hrushovski’s machinery. Schematically, it follows [3], which
is a streamlined account of Hrushovski’s aforementioned paper.

In [4] and [5] it was explained how to apply Hrushovski’s method to con-
struct “fields with black points” (see also [6]). In a similar way, the techniques
exhibited here were used in [7] to construct “fields with red points” (fields with
a predicate for an additive subgroup, of Morley rank 2), whose existence was
conjectured in [8].
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The theories Tµ, which depend on the choice of codes and of a certain
function µ, have the following properties:

Theorem 1.2. Let M be a model of Tµ.

1. Let tri denote the transcendence degree in the sense of Ti and dim the
F–linear dimension. Then for every finite subset A of M we have

dim(A) ≤ tr1(A) + tr2(A).

2. Let N be a model of Tµ which extends M . Then N ≺ M if N is an
elementary extension of M in the sense of T1 and in the sense of T2.

It follows1 from 1. that for every p there is a strongly minimal structure
(K,+,¯,⊗) such that (K,+,¯) and (K,+,⊗) are algebraically closed fields of
characteristic p and for every transcendental x the ¯–powers

1¯, x, x¯ x, x¯ x¯ x, . . .

are algebraically independent in the sense of (K,+,⊗), and vice versa.

2 Codes

Let us fix the following notation: T is a countable strongly minimal extension of
T0 with the DMP, C denotes the monster model of T , tr(a/A) the transcendence
degree2 of the tuple a over A, MR(p) the Morley rank of the type p. Thus we
have

tr(a/A) = MR(tp(a/A)).

We use
φ(x) ∼k ψ(x)

or φ(x) ∼k
x ψ(x) to express that the Morley rank of the symmetric difference of

φ and ψ is smaller than k,
We denote by 〈a〉 the F–vector space of dimension dim(a) spanned by the

components of the n–tuple a. Subspaces of 〈a〉 can be described in terms of
subspaces U of Fn as

Ua =
{ n∑

i=1

uiai

∣∣∣ u ∈ U
}
.

We call a stationary type a group type (or coset type) if it is the generic type of a
(coset of a) connected definable subgroup of (Cn,+). These properties depend
only on the parallel class. So we can call a formula of Morley degree 1 a group
formula (or coset formula) if it belongs to a group type (or a coset type) of the
same rank.

Given a group formula χ(x) of rank k, we denote by Inv(χ) the group of all
H ∈ Gln(F ) which map the generic realizations of χ to generic realizations, or,
equivalently, for which H(χ) ∼k χ. If χ is a coset formula, Inv(χ) is Inv(χg)
where χg is the associated group formula3.

1We will explain this at the end of the paper (p. 21).
2The maximal number of components of a which are algebraically independent over A.
3 This is χ(x−m) for a generic realization m of χ(x).
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A definable set X ⊂ Cn of rank k is encoded by ϕ(x, y) if n = |x| and there
is some tuple b such that X ∼k ϕ(x, b).

A code c is a parameter free formula φc(x, y) where the variable x ranges
over nc–tuples of the home sort and y over a sort of T eq, with the following
properties:

C(i) All non–empty4 φc(x, b) have (constant) Morley rank kc and Morley
degree 1.

C(ii) For every U ≤ Fnc there is a number kc,U such that for every realization
a of φc(x, b) we have:

tr(a/b, Ua) ≤ kc,U .

Moreover, equality holds for generic a. (So we have kc = kc,0.)

C(iii) dim(a) = nc for all realizations a of φc(x, b). If a is generic, then
dim(a/ acl(b)) = nc (this is equivalent to kc,U = kc − 1 for all one–
dimensional U).

C(iv) If φc(x, b) and φc(x, b′) are not empty and φc(x, b) ∼kc φc(x, b′), then
b = b′.

C(v) If some non–empty φc(x, b) is a coset formula, then all are. We call such
a code c a coset code. In this case, the group Inv(φc(x, b)) does not
depend on b (whenever it is defined). Hence we denote it by Inv(c).

C(vi) For all b and m the set defined by φc(x+m, b) is encoded by φc.

C(vii) There is a subgroup Gc of Glnc(F ) such that:

a) for all H ∈ Gc and all non–empty φc(x, b) there exists a (unique) bH

such that
φc(Hx, b) ≡ φc(x, bH).

b) if H ∈ Glnc(F ) \Gc, then no non–empty φc(Hx, b) is encoded by φc.

Two codes c and c′ are equivalent if for every b there is some b′ such that
φc(x, b) ≡ φc′(x, b′) and vice versa. If c is a code and H ∈ Glnc(F ), then

φcH (x, y) = φc(Hx, y)

is also a code. C(viia) states that cH and c are equivalent if H lies in Gc.

Corollary 2.1. Let p ∈ S(b) be the generic type containing φc(x, b). Then b is
the canonical base of p.

Proof. Immediate from C(iv).

A formula χ(x, d) is simple if it has Morley degree 1 and dim(a/ acl(d)) = |x|
for all generic realizations a of χ(x, d). The second half of C(iii) states that all
non–empty φc(x, b) are simple.

4Codes where all φ(x, b) are empty will not be considered.
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Lemma 2.2. Every simple formula χ(x, d) can be encoded by some code c.

I.e.
χ(x, d) ∼kc φc(x, b0)

for some parameter b0. By C(iv) it follows that b0 is uniquely determined, thus
b0 ∈ dcleq(d).

Proof. Set nc = |x|, kc = MRχ(x, d) and kc,U = tr(a/d, Ua) for a generic
realization a of χ(x, d). Let p be the global type of rank kc containing χ(x, d)
and b0 its canonical base and choose some φ(x, b0) ∈ p of rank kc and degree
1. Hence, φ(x, b0) satisfies χ(x, d) ∼kc φc(x, b0) and has property C(iv) for all
b and b′ realizing tp(b0). We can choose φ(x, b0) strong enough to ensure that
C(iv) holds for all b and b′.

Consider now the set X of all b of same length and sort as b0 for which
φ(x, y) satisfies C(i), C(ii), C(iii) and C(v). The latter means that φ(x, b) is
a coset formula iff φ(x, b0) is, and in this case Inv(φ(x, b)) = Inv(φ(x, b0)). Let
us check that X is definable by a countable disjunction of formulae. This is
clear for C(i) and C(iii). The second part in C(iii) is a special case of C(ii),
and the latter follows from the fact that tr(a/b, Ua) ≥ kc,U is equivalent to
tr(Ua/b) ≤ (kc − kc,U ) for generic a in φ(x, b). We refer to [7] for C(v), where
it is shown that the set of all b such that φ(x, b) is a group (coset) formula is
definable.

All b realizing tp(b0) belong to X. So a finite part θ(y) of this type implies
X. Then the formula

φ′c(x, y) = φ(x, y) ∧ θ(y)
has all properties, except possibly C(vi) and C(vii).

Given any nc–tuple m and parameter b, the formula φ′c(x + m, b), if non–
empty, has again rank kc and degree 1. If a is a generic realization, then a+m is a
generic realization of φ′c(x, b) and a+m |̂

b
m. Let u be some vector in Fnc such

that
∑

i uiai ∈ acl(b,m). Then
∑

i ui(ai + mi) ∈ acl(b,m). By independence∑
i ui(ai +mi) ∈ acl(b), which implies u = 0. Therefore dim(a/ acl(b,m)) = nc

and φ′c(x+m, b) is simple. We note also that for every U

tr(Ua/m, b) = tr(U(a+m)/m, b) = tr(U(a+m)/b),

which implies tr(a/m, b, Ua) = kc,U .
Whence, each φ′c(x+m, b) can be encoded by some formula φ′(x, y) which has

all properties of codes except possibly C(vi) and C(vii). Since these properties
can be expressed by a countable disjunction we conclude that there is a finite
sequence of formulae φ1, . . . , φr with all properties except possibly C(vi) and
C(vii) which encode all formulas φ′c(x+m, b) with m and b varying. Moreover,
we may assume that for all i

|= ∀y ∃v, w φi(x, y) ∼kc
x φ′c(x+ v, w),

which implies that either all or none of the φi code coset formulas and if so,
they have all the same invariant group Inv(φ(x, b0)).

To prevent double-encoding, set

θi(y) =
∧

j<i

∀z φj(x, z) 6∼kc
x φi(x, y).
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Fix a sequence of different constants5 w1, . . . , wr and define

φ′′c (x, y, y′) =
r∨

i=1

φi(x, y) ∧ θi(y) ∧ y′ .= wi.

φ′′c (x, y) has all properties except possibly C(vii). To prove C(vi) fix m and b, w
such that φ′′c (x + m, b, w) is not empty. Then w equals some wj and φ′′c (x +
m, b, w) is equivalent to φj(x + m, b). We know that φj(x, b) ∼ φ′c(x + m′, b′)
for some m′ and b′. It follows that: φj(x+m, b) ∼ φ′c(x+ (m+m′), b′). Since
φ′c(x+ (m+m′), b′) can be encoded by one of the φi, property C(vi) holds.

Only property C(vii) remains to be obtained. Change the notation slightly
and assume χ(x, d) ∼kc φ′′c (x, b0). Define Gc to be the set of all A ∈ Glnc

(F )
such that there is some m and some realization b of p = tp(b0) such that
φ′′c (Ax, b0) ∼kc φ′′c (x + m, b). To show that Gc is a group, consider another
A′ ∈ Gc. Then there are m′ and b′ |= p such that φ′′c (A′x, b) ∼kc φ′′c (x+m′, b′).
This yields φ′′c (AA′x, b0) ∼kc φ′′c (A′x+m, b) ≡ φ′′c (A′(x+A′−1m), b) ∼kc φ′′c (x+
(A′−1m+m′), b′), and so AA′ ∈ Gc.

There is a ρ(y) ∈ p such that for no A ∈ Glnc(F )\Gc there are some b which
satisfies ρ and some tuple m with φ′′c (Ax, b0) ∼kc φ′′c (x+m, b), i.e.

|=
∧

A∈Glnc (F )\Gc

¬ρA(b0),

where
ρA(y) = ∃z, y′ ρ(y′) ∧ φ′′c (Ax, y) ∼kc

x φ′′c (x+ z, y′).

Whence the formula

σ(y) =
∧

A∈Gc

ρA(y) ∧
∧

A∈Glnc (F )\Gc

¬ρA(y)

is satisfied by b0. An easy calculation shows

|= ∀y
(
σ(y) →

( ∧

A∈Gc

σA(y) ∧
∧

A∈Glnc (F )\Gc

¬σA(y)
))

,

where:
σA(y) = ∃y′ σ(y′) ∧ φ′′c (Ax, y) ∼kc

x φ′′c (x, y′).

Write now
φ′′′c (x, y) = φ′′c (x, y) ∧ σ(y).

It is clear that φ′′′c still encodes χ(x, d) and has all properties except possi-
bly C(vii). For C(vi) assume φ′′c (x + m, b) ∼kc φ′′c (x, b′). b′ satisfies ρA iff ,
φ′′c (Ax, b′) ∼kc φ′′c (x + m′, b′′) for some m′ and some realization b′′ of ρ, or,
equivalently, φ′′c (Ax, b) ∼kc φ′′c (x+(m′−A−1m), b′′). Therefore b satisfies ρA iff
b′ satisfies ρA. This implies that b satisfies σA iff b′ satisfies σA. So C(vi) holds.

Now, C(vii) is satisfied by φ′′′c andGc only in the weaker form that φ′′′c (Hx, b)
is encoded by φ′′′c iff H ∈ Gc. By C(iv) we can define for each A ∈ Gc a function
b 7→ bA such that

φ′′′c (Ax, b) ∼kc φ′′′c (x, bA)
5If T has no constants, use definable elements in a sort of T eq.
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and set:
φc(x, y) =

∧

A∈Gc

φ′′′c (A−1x, yA).

Since φc(x, b) ∼kc φ′′′c (x, b) only C(viia) needs to be checked: Given H ∈ Gc,

φc(Hx, b) ≡
∧

A∈Gc

φ′′′c (A−1Hx, bA) ≡
∧

A∈Gc

φ′′′c (A−1x, bHA) ≡ φc(x, bH).

Lemma 2.3. There is a set C of codes with the following properties:

C(viii) Every simple formula is encoded by a unique c ∈ C.

C(ix) For all c ∈ C and all H ∈ Glnc(F ) the code cH is equivalent to some
code in C.6

Proof. Work inside an ω–saturated model M of T and enumerate all simple
formulas χi, i = 1, 2, . . . with parameters in M . We need only to show that all
χi can be encoded in C. We construct C as an increasing union of finite sets
∅ = C0 ⊂ C1 ⊂ · · · . Assume that Ci−1 is defined and closed under the action
of Gl(F ) in the sense of C(ix). If χi can be encoded in Ci−1, we set Ci = Ci−1.
Otherwise choose some code c′ which encodes χi. Let ρ(b) express, that φc′(x, b)
cannot be encoded in Ci−1 and define

φc(x, y) = φc′(x, y) ∧ ρ(y).

Then φc still encodes χi. Moreover φc determines again a code: only C(vii)
needs to be considered. So assume that |= ρ(b) and let H be in Gc′ . We need
to show that |= ρ(bH). Otherwise φc′(Hx, b) can be encoded in Ci−1. Since
Ci−1 is closed under H−1, also φc′(x, b) can be encoded in Ci−1, which is a
contradiction.

Choose now a system of right representatives A1, . . . , Ar of Gc in Glnc(F )
and set Ci = Ci−1 ∪ {cA1 , . . . , cAr}.

3 Difference sequences

As in the previous section, T denotes a countable strongly minimal extension
of T0 with the DMP.

Let us recall the following lemma, which will be useful to distinguish whether
or not a formula determines a coset of a group, according to the independence
among generic realizations.

Lemma 3.1. Let φ(x) be a formula over B, of Morley degree 1, and e0 and e1
two generic B–independent realizations. If H ∈ Gln(F ) and e0 |̂

B
e0 − He1,

then φ(x) is a coset formula and H ∈ Inv(φ(x)).

6We will construct C so that every cH is equivalent to some cH′ which belongs to C. (We
identify codes with equivalent formulas.)
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Proof. It follows from

MR(He1/B,He1 − e0) = MR(e0/B,He1 − e0) = MR(e0/B) ≥ MR(He1/B)

that e0, He1 and He1−e0 are pairwise independent over B. By [9] e0, He1 and
He1 − e0 are generic elements of B–definable cosets of a B–definable group G.
Whence φ(x) is a coset formula and HG = G.

We fix now for every code c a number mc ≥ 0 such that for no φc(x, b) there
is a Morley sequence (ei) of length mc and some b′ from the same sort as b with
ei 6 |̂ b

b′ for all i.

Theorem 3.2. For every code c and any number µ > mc there exists a para-
meter free formula Ψc(x0, . . . , xµ), whose realizations are called difference se-
quences (of length µ), with the following properties:

P(i) If e′0, . . . , e
′
µ, f is a Morley sequence of φc(x, b), then e′0 − f, . . . , e′µ − f

is a difference sequence.7

P(ii) For every difference sequence e0, . . . , eµ there is a unique b with |= φc(ei, b)
for all i (we call the base of the sequence). Furthermore, b is uniquely
determined if φc(ei, b) holds for at least mc many i’s.8

P(iii) If e0, . . . , eµ is a difference sequence then so is

e0 − ei, . . . , ei−1 − ei,−ei, ei+1 − ei, . . . , eµ − ei.

P(iv) Let e0, . . . , eµ be a difference sequence with base b. We distinguish two
cases:

Suppose c is not a coset code:

a) If ei is generic in φc(x, b), then ei 6 |̂ b
ei −Hej for all H ∈ Glnc(F )

and i 6= j.

Suppose c is a coset code:

b) φc(x, b) is a group formula.
c) Ψc(e0, . . . , ei−1, ei − ej , ei+1, . . . , eµ) for all i 6= j.9

d) Ψc(e0, . . . , ei−1,Hei, ei+1, . . . , eµ) for all H ∈ Inv(c).9

e) If ei is a generic realization of φc(x, b), then ei 6 |̂ b
ei − Hej for all

i 6= j and H ∈ Glnc(F ) \ Inv(c).

P(v) For all H ∈ Gc

Ψc(x0, . . . , xµ) ≡ Ψc(Hx0, . . . , Hxµ).

The derived sequences of (ei) consist of all difference sequences obtained
from (ei) by iteration of the transformations described in P(iii). Note that all
permutations can be derived and have the same base (by P(ii)). We will later
use a more refined notation: if in the derivation process only indices ≤ λ are
involved, then we call the resulting derivation a λ–derivation.

7In general b will not be the base of (e′i) in the sense of P(ii).
8It follows that b ∈ dcl(ei1 , . . . , eimc

) for all 0 ≤ i1 < · · · imc ≤ µ.
9By P(ii) and µ > mc this new sequence has also base b.
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Proof. Consider the following property DS(e0, . . . , eµ):

There is some b′ and a Morley sequence e′0, . . . , e
′
µ, f

′ of φc(x, b′) such that
ei = e′i − f ′.
This is clearly a partial type.

Claim: DS has all properties of Ψc.

Proof: Assume ei = e′i− f ′ for a Morley sequence (e′i), f
′ of φc(x, b′). Then (ei)

is a Morley sequence of φc(x+ f ′, b′) over b′, f ′. If φc(x+ f ′, b′) ∼ φc(x, b), then
(ei) is a Morley sequence of φc(x, b).10

P(ii) Suppose |= φc(ei, b
′′) for mc–many i’s. Then there exists such an i with

ei |̂ b
b′′. Hence MR(φc(x, b) ∧ φc(x, b′′)) = kc and therefore b = b′′.

P(iii) Fix i ∈ {0, . . . , µ} and note that e′0, . . . , e
′
i−1, f

′, e′i+1, . . . , e
′
µ, e

′
i is again a

Morley sequence for φc(x, b′). Hence, the sequence

e′0 − e′i, . . . , e
′
i−1 − e′i, f

′ − e′i, e
′
i+1 − e′i, . . . , e

′
µ − e′i =

e0 − ei, . . . , ei−1 − ei,−ei, ei+1 − ei, . . . , eµ − ei

also satisfies DS.

P(iva) If c is not a coset code, then φc(x, b) is not a coset formula and the claim
follows from Lemma 3.1.

P(ivb) If c is a coset code, then φc(x, b′) is a coset formula. Since f ′ is a generic
realization, φc(x, b) ∼ φc(x+ f ′, b′) is a group formula.

P(ivc) Extend the Morley sequence e0, . . . , eµ of φc(x, b) by f . If φc(x, b) is a
group formula, and i 6= j, then

e0 + f, . . . , ei−1 + f, ei − ej + f, ei+1 + f, . . . , eµ + f, f

is again a Morley sequence of φc(x, b). It follows that

e0, . . . , ei−1, ei − ej , ei+1, . . . , eµ

realizes DS.

P(ivd) Choose f as above. If H ∈ Inv(c), then

e0 + f, . . . , ei−1 + f,Hei + f, ei+1 + f, . . . , eµ + f, f

is also a Morley sequence of φc(x, b). It follows that

e0, . . . , ei−1,Hei, ei+1, . . . , eµ

realizes DS.

10Since b is canonical.
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P(ive) Immediate from Lemma 3.1.

P(v) If φc(Hx, b′) ≡ φc(x, b′′), then He′0, . . . ,He
′
µ, Hf is a Morley sequence of

φc(x, b′′) and (Hei) = (He′i −Hf) satisfies DS.

This proves the claim.

We will take for Ψc a finite part of DS. Property P(i) will hold automati-
cally. The Properties P(ii), P(iva), P(ivb), P(ive) can be described by countable
disjunctions, which follow from DS. Therefore these properties follow from a
sufficiently strong part of DS, which we call Ψ′c.

Assume c to be a non–coset code. Write

Vi(x0, . . . , xµ) = (x0 − xi, . . . , xi−1 − xi,−xi, xi+1 − xi, . . . , xµ − xi)

and
VH(x0, . . . , xµ) = (Hx0, . . . , Hxµ).

Let V be the finite group generated by V0, . . . , Vµ and VH for H ∈ Gc. The
formula

Ψ(x̄) =
∧

V ∈V
Ψ′c(V (x̄))

has now properties P(iii) and P(v), and it still belongs to DS, since DS satisfies
P(iii) and P(v).

If c is a coset code, consider the group generated by {VH}H∈Gc and the
operations described in P(ivc) and P(ivd), and define Ψc analogously. It satisfy
then P(ivc) and P(ivd) and P(v), and therefore11 also P(iii).

We choose an appropriate Ψc (depending on µ) for every code c in such a
way that

ΨcH (x0, . . . ) = Ψc(Hx0, . . . ).

For two codes c and c′ to be equivalent we also impose that

Ψc ≡ Ψc′ .

Corollary 3.3. Lemma 2.3 remains true if Ψc is also taken into account.

Proof. This follows from P(v) and the proof of Lemma 2.3.

4 The δ–function

Consider now two strongly minimal theories12 T1 and T2 which intersect in T0,
the theory of infinite F–vector spaces.

By considering their morleyization, we may assume that :

QE-Assumption. Both theories Ti have quantifier elimination. Their lan-
guages Li are relational, except for the function symbols in L0.

11Note that −1 ∈ Inv(c).
12 In this section neither countability nor the DMP will be required.
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We may also assume that codes φc and formulas Ψc for T1 and T2 are quantifier
free, as well as Ti–types tpi(a/B). This assumption will be dropped only in
section 9.

Let K be the class of all models A of T ∀1 ∪ T ∀2 . So, A is an F–vector space,
which occurs at the same time as a subspace of C1 and as a subspace of C2,
where Ci the monster model of Ti.

For finite A ∈ K, define

δ(A) = tr1(A) + tr2(A)− dimA.

We have that:

δ(0) = 0(1)
δ(〈a〉) ≤ 1(2)
δ(A+B) + δ(A ∩B) ≤ δ(A) + δ(B)(3)

Moreover, if dim(A/B) is finite13, then we also set

δ(A/B) = tr1(A/B) + tr2(A/B)− dimA/B.

In case B is finite, we have that δ(A/B) = δ(A+B)− δ(B).

We say that B is strong in A, if B ⊂ A and δ(A′/B) ≥ 0 for all finite A′ ⊂ A
and denote this by

B ≤ A.

A proper strong extension B ≤ A is minimal, if there is no A′ properly contained
between B and A such that B ≤ A′ ≤ A.14

Let B ⊂ A and a be in A. We call a algebraic over B, if a is algebraic over
B either in the sense of T1 or of T2. We call A transcendental over B, if no
a ∈ A \B is algebraic over B.

Lemma 4.1. B ≤ A is minimal iff δ(A/A′) < 0 for all A′ which lie properly
between B and A.

Proof. One direction is clear, since A′ ≤ A implies δ(A/A′) ≥ 0. Conversely,
if δ(A/A′) ≥ 0 for some A′, we may assume that δ(A/A′) is maximal. Then
A′ ≤ A and A is not minimal over B.

Lemma 4.2. Let B ≤ A be a minimal extension. One of the three following
holds:

(I) δ(A/B) = 0 and A = 〈B, a〉 for some element a ∈ A \ B algebraic over
B ( algebraic minimal extension)

(II) δ(A/B) = 0, with A transcendental over B. (prealgebraic minimal ex-
tension)

13We do not assume B ⊂ A.
14Note that B is strong in all A′ ⊂ A.
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(III) δ(A/B) = 1 and A = 〈B, a〉, for some element a transcendental over B
( transcendental minimal extension)

Note that in the prealgebraic case dimA/B ≥ 2.

Proof. Minimality implies that there is no C, properly contained between B
and A with δ(C/B) = 0. We distinguish two cases.

δ(A/B) = 0. If there is an a ∈ A\B which is algebraic overB, then δ(〈B, a〉/B) =
0. Therefore 〈B, a〉 = A.

δ(A/B) > 0. For each a ∈ A \ B it follows that δ(〈B, a〉/B) 6= 0. Hence
δ(〈B, a〉/B) = 1 and therefore 〈B, a〉 ≤ A. By minimality 〈B, a〉 = A.

We define the class K0 ⊂ K as

K0 = {M ∈ K | 0 ≤M}.
It is easy to see that K0 can be axiomatized by a set of universal L1 ∪ L2–
sentences. The following results are also easy.

Lemma 4.3. Fix M in K0 and define

d(A) = min
A⊂A′⊂M

δ(A′)

for all finite subspaces A of M . Then d is (on finite subspaces) the dimension
function of a pregeometry i.e., d satisfies (1), (2), (3) and

d(A) ≥ 0(4)
A ⊂ B ⇒ d(A) ≤ d(B).(5)

Lemma 4.4. Let M be in K0 and A a finite subspace. Let A′ be an extension
of A, minimal with δ(A′) = d(A). Then A′ is the smallest strong subspace of
M which contains A. We denote it by cl(A).

We call cl(A) the closure of A.
For arbitrary subsets X of M we will use the notation δ(X) = δ〈X〉 and

d(X) = d〈X〉.

Note that δ(A) ≤ dim(A).

5 Prealgebraic codes

From now on, T1 and T2 are two countable strongly minimal extensions of T0

with the DMP. We assume the QE-Assumption of section 4, as in the next
three sections 6, 7 and 8.

Choose for each Ti a set Ci of codes as in Corollary 3.3. A prealgebraic code
c = (c1, c2) consists of two codes c1 ∈ C1 and c2 ∈ C2 with the following
properties:

11



• nc := nc1 = nc2 = kc1 + kc2

• For all proper, non–zero subspaces U of Fnc

(6) kc1,U + kc2,U + dimU < nc.

Set mc = max(mc1 ,mc2). Note that simplicity of the φci
(x, b) implies that

nc ≥ 2. Note also that for every H ∈ Glnc
(F )

cH = (cH1 , c
H
2 )

is a prealgebraic code.

Notation
Unless otherwise stated, independence (a |̂

b
c) means independent both in the

sense of T1 and T2. If c is a prealgebraic code, a (generic) realization of φc(x, b)
is a (generic) realization of both φc1(x, b1) and φc2(x, b2). A Morley sequence of
φc(x, b) is a Morley sequence for both φc1(x, b1) and φc2(x, b2). Similarly, for a
set X of real elements, one defines X–generic realization of φc(x, b) and Morley
sequence of φc(x, b) over X. A difference sequence for c with basis b = (b1, b2)
is a difference sequence for ci with basis bi for each i = 1, 2.

We say c is a coset code if c1 and c2 are. We define then Inv(c) = Inv(c1) ∩
Inv(c2).

T eq
1 and T eq

2 have only the home sort in common. So b ∈ dcleq(A) (resp.
acleq(A)) means that b is a pair consisting of an element in dcleq1(A) (resp.
acleq1(A)) and an element in dcleq2(A) (resp. acleq2(A)). If M is a model of
T1 ∪ T2, then M eq consists of imaginary elements in the sense of T1 and in the
sense of T2.

Lemma 5.1. Let B ≤ A be a prealgebraic minimal extension and a = (a1, . . . , an)
a basis for A over B. Then there is a prealgebraic code c and b ∈ acleq(B) such
that a is a generic realization of φc(x, b).

Proof. Fix i ∈ {1, 2}. Choose di ∈ acleqi(B) such that tpi(a/Bdi) is stationary.
Since A/B is transcendental, we have dim(a/ acli(B)) = n. So we can find
an Li–formula χi(x) ∈ tpi(a/Bdi) of Morley rank ki = MRi(a/Bdi). Since
A/B is transcendental, χ(x) is simple. By 2.3 there is a Ti–code ci ∈ Ci and
bi ∈ dcleqi(Bdi) with χi(x) ∼ki φci(x, bi).

Set c = (c1, c2) and b = (b1, b2). It follows from

k1 + k2 − n = tr1(a/B) + tr2(a/B)− dim(A/B) = δ(A/B) = 0

that nc = kc1 + kc2 . Inequality (6) follows from Lemma 4.1:

kc1,U + kc2,U − (n− dimU) = tr1(a/b, Ua) + tr2(a/b, Ua)− dim(Fn/U)
=δ(A/B + Ua) < 0.

Lemma 5.2. Let B ∈ K, b ∈ acleq(B), c be a prealgebraic code, and a a B–
generic realization of φc(x, b). Then 〈B, a〉 is a prealgebraic minimal extension
of B.
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Note that the isomorphism type of a over B is uniquely determined.

Proof. The proof follows from the above considerations. Note that subspaces of
A containing B are of the form B + Ua for some subspace U of Fnc .

Lemma 5.3. Let B ⊂ A be in K, c a prealgebraic code, b in acleq(B) and a ∈ A
a realization of φc(x, b) in A not completely contained in B. Then

1. δ(a/B) ≤ 0.

2. If δ(a/B) = 0, then a is a B–generic realization of φc(x, b).

Proof. Let Ua = 〈a〉 ∩ B. Let Ua = 〈a〉 ∩ B. Since a is not contained in B, it
follows that U is a proper subspace of Fnc . Therefore

δ(a/B) = tr1(a/B) + tr2(a/B)− (n− dimU) ≤ kc1,U + kc2,U + dimU − n.

If U 6= 0 the right hand side is negative. If U = 0, we have

δ(a/B) = tr1(a/B) + tr2(a/B)− n ≤ kc1 + kc2 − n = 0.

So δ(a/B) = 0 implies tri(a/B) = kci .

Lemma 5.4. Let M ≤ N be a strong extension of elements in K. Given a
prealgebraic code c, and natural numbers ε and r, there is some λ = λ(ε, r, c) ≥ 0
such that for every difference sequence e0, . . . , eµ in N , with basis b, and λ ≤ µ,
either

• the basis of some λ–derived sequence of e0, . . . , eµ lies in dcleq(M),

or

• for every subset A of M ′ with dimA ≤ ε the sequence e0, . . . , eµ contains
a Morley sequence of φc(x, b) over M,A of length r.

Proof. By adding e0, . . . , emc−1 to A, we may assume that b ∈ dcleq(M ∪A). If
at least (mc+1) many of the ei lie in the same class of Nnc/Mnc , we subtract
one of these elements from the others and obtain a derived sequence with mc

many elements in M , which then has a base in dcleq(M). Therefore, we may
assume that each class of Nnc/Mnc contains at most mc many ei’s.

Fix an A of dimension ε and set

d = dim(e0, . . . , eµ/〈M,A〉).

Then dim(e0, . . . , eµ/M) ≤ d+ ε. Thus by our assumption

µ+ 1 ≤ mc |F |(d+ε)nc .

Consider the following sets of indices:

X1 = {i ≤ µ | ei generic over M,A, e0, . . . , ei−1}
X2 = {i ≤ µ | i 6∈ X1 ∧ dim(ei/M,A, e0, . . . , ei−1) > 0}
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It is clear that
d ≤ (|X1|+ |X2|)nc.

With the notation δ(i) = δ(ei/M,A, e0, . . . , ei−1), Lemma 5.3 implies that
δ(i) < 0 if x ∈ X2, and δ(i) = 0 otherwise. Since M ≤ N we have

0 ≤ δ(A, e0, . . . , eµ/M) = δ(A/M) +
µ∑

i=1

δ(i) ≤ ε− |X2|.

If we put the three inequalities together, we obtain

µ+ 1 ≤ mc |F |(|X1|nc+ε nc+ε)nc .

If µ is large enough, |X1| ≥ r and (ei)i∈X1 is our Morley sequence.

6 The class Kµ

Choose now a function µ∗ which assigns to every prealgebraic code c a natural
number µ∗(c). We assume that

M(i) for every m and n there are only finitely many c with µ∗(c) = m and
nc = n.

The existence of such a function is ensured by the countability of C. Then we
choose a function µ from prealgebraic codes to natural numbers such that

M(ii) µ(c) ≥ λ(nc, 1, c) + 1

M(iii) µ(c) ≥ λ(0, λ(0,mc + 1, c) + 1, c)

M(iv) µ(c) ≥ λ(0, µ∗(c) + 1, c)

M(v) µ(c) = µ(d), if c is equivalent to some dH .15

From now on, all difference sequences of c will have fixed length µ(c) + 1.
Condition M(v) ensures that, if c is equivalent to dH , and (ei) is a difference
sequence for d, then (Hei) is a difference sequence for c.

The class Kµ consists of all elements A of K0 which do not contain a
difference sequence for any prealgebraic code.

Lemma 6.1. Let B ≤M ∈ Kµ and A/B prealgebraic minimal. Then there are
only finitely many B–isomorphic copies of A strong in M .

Proof. Let a be a basis of A/B. Choose d ∈ acleq(B) such that the types
tpi(a/Bdi) are stationary. It suffices to show that for all such d the partial
type tp1(a/Bd1) ∪ tp2(a/Bd2) has only finitely many realizations in M . For
this we choose a prealgebraic code c and b ∈ acleq(B) with |= φc(a, b) by 5.1.
We now show that φc(x, b) has only finitely many realizations in M . If not,
there is an infinite sequence e0, . . . of realizations such that ei is not contained

15Note that every dH can be equivalent to only one prealgebraic c.
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in 〈B, e0, . . . , ei−1〉 (since the latter set is finite). Strongness of B in M yields
that e0 is a B–generic realization by 5.3. From δ(e0/B) = 0 we conclude that
〈B, e0〉 ≤M . If we proceed in this way, we see that e0, . . . is a Morley sequence
of φc(x, b) over B. Now P(i) yields that e1 − e0, . . . , eµ(c)+1 − e0 is a difference
sequence of c. Contradiction.

Corollary 6.2. Let B ≤ M ∈ Kµ and B ⊂ A finite with δ(A/B) = 0. Then
there are only finitely many B ≤ A′ ⊂M , which are isomorphic to A over B.

Note that automatically A′ ≤M .

Proof. Decompose the extensionA/B into a sequence of minimal extensions.

Corollary 6.3. Let X be a finite subset of M ∈ Kµ. Then the d–closure of X:

cld(X) = {x ∈M | d(Xx) = d(X)}

is at most countable.

Proof. Note that cld(X) is the union of all A′ ⊂ M with cl(X) ⊂ A′ and
δ(A′/ cl(X)) = 0.

Lemma 6.4. Let M ∈ Kµ, M ≤M ′ a minimal extension and (ei) a difference
sequence for a prealgebraic code c with base b ∈ acleq(M). Then c has a differ-
ence sequence (e′i) with the same base b such that M contains e′0, . . . , e

′
µ(c)−1.

In particular, e′µ(c) is an M–generic realization of φc(b), which generates M ′

over M as a vector space. Also b must be in dcleq(M).

Proof. Let ei be any element which does not lie in M . By strongness of M in
M ′ and Lemma 5.3, it follows that ei is an M–generic realization of φc(x, b). We
have δ(〈M, ei〉/M) = 0 and whence 〈M, ei〉 ≤M ′. By minimality 〈M, ei〉 = M ′.

After permutation we may assume that e0, . . . , eν−1 are inM and eν , . . . , eµ(c)

are not. Since M ∈ Kµ, it follows that ν ≤ µ(c). As above, for i ≥ ν, ei is an
M–generic realization of φc(x, b) which generates M ′/M , so ei −Hieµ(c) ∈ M
for some Hi ∈ Glnc(F ). Therefore ei |̂ b

ei −Hieµ(c).
If c is a not coset code, it follows from P(iva) that i = µ(c). So we have

ν = µ(c).
Suppose that c is a coset code. If ν ≤ i < µ(c), then Hi ∈ Inv(c) by P(ive).

By P(ivc) and P(ivd) the difference sequence

e0, . . . , eν−1, eν −Hνeµ(c), . . . , eµ(c)−1 −Hµ(c)−1eµ(c), eµ(c)

is as stated in the claim. Note that the above sequence has same base b.

7 Amalgamation

Theorem 7.1. Kµ (and therefore also the class of all finite elements of Kµ)
has the amalgamation property with respect to strong embeddings.
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Proof. Consider B ≤ M and B ≤ A in Kµ. We want to find a strong ex-
tension M ′ ∈ Kµ of M and a B ≤ A′ ≤ M ′ isomorphic to A over B. We
may assume that A/B and M/B are minimal. We will show that either some
“free amalgam”M ′ ofM and A is in Kµ or thatM and A are isomorphic over B.

Case 1: A/B is algebraic. Then A = 〈B, a〉 for an element a which is (e.g.)
algebraic over B in the sense of T1 and transcendental over B in the sense of
T2. There are two (non exclusive) subcases.

Subcase 1.1: tp1(a/B) is realized in M . Choose some realization a′ in M .
Hence, a′/B is transcendental in the sense of T2 and a′ 7→ a defines an isomor-
phism between M = 〈B, a′〉 and A over B.

Subcase 1.2: There is some a′ 6∈ M , which realizes tp1(a/B) (in the sense of
T1). Define the structure M ′ = 〈M,a〉 by setting a to have the same T1–type
over M as a′ and being transcendental over M in the sense of T2 i.e. M ′ is a free
amalgam of A and M over B in the sense that M and A are independent over
B and linearly independent16 over B. It is easy to see that, in free amalgams,
M ≤M ′ and A ≤M ′. By Lemma 7.2 below, M ′ belongs to Kµ.

Case 2: A/B is transcendental. We may assume that M ∩A = B. Since A/B is
transcendental, we find M ′ = M +A in K, such that M and A are independent
over B. So M ′ is a free amalgam of M and A, and M ′ is a minimal exten-
sion of M and of A. If M ′ ∈ Kµ, we are done. Otherwise, 7.3 shows that, by
symmetry, we may assume that M ′ contains a difference sequence (ei) of a pre-
algebraic code c with base b ∈ acleq(M). Also by Lemma 7.2 , dim(M ′/M) > 1
and A/B is prealgebraic. By minimality and Lemma 6.4, we may also assume
that e0, . . . , eµ(c)−1 are in M and eµ(c) is an M–generic realization of φc(x, b),
which generates M ′ over M . Write eµ(c) = m + a for m ∈ M and a ∈ A.
Therefore δ(a/B) = δ(a/M) = δ(eµ(c)/M) = 0. Whence a generates A over
B. We apply now Lemma 5.4 and M(ii) to the extension (M ′/A) and m and
obtain two subcases:

Subcase 2.1: There is a (µ(c) − 1)–derived difference sequence (e′i) with basis
b′ ∈ dcleq(A). Since e′i ∈ M for i ≤ µ(c) − 1, the base b′ is in dcleq(M) ∩
dcleq(A) ⊂ acleq(B). Hence e′µ(c) is an M–generic realization of φc(x, b′) which
generates M ′ over M . Again there are two cases.

Subsubcase 2.1.1: e′µ(c) ∈ A. Since A ∈ Kµ, there is an e′i ∈ M not in A.
By minimality e′i generates M over B and e′µ(c) 7→ e′i defines a B-isomorphism
between A and M .

Subsubcase 2.1.2: e′µ(c) 6∈ A. Then e′µ(c) is an A–generic realization of φc(x, b′).
Write e′µ(c) = m′+a′ for m′ ∈M and a′ ∈ A. Since e′µ(c), m

′ and a′ are pairwise
independent over b′, then, for i = 1, 2, φci(x, b

′
i) is a coset formula by [9] and

whence a group formula by C(v) and P(ivb). It follows that −m′ and a′ are
generics of the same Bb′i–definable coset of a Bb′i–definable connected group.
Thus they have the same type over B. As above m′ generates M over B and a′

16I.e. dim(A/B) = dim(A/M).
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generates A over B. So the map a′ 7→ −m′ defines an isomorphism between A
and M over B.

Subcase 2.2: e0, . . . , eµ(c)−1 contains a B,m–generic realization of φc(x, b), say
e0. For i = 1, 2, e0 and eµ(c) have the same Ti–type over B,m, bi. Whence
e0 −m and a have the same Ti–type over B,m, bi, a forteriori over B. Whence
a 7→ e0 −m defines a B–isomorphism between A and M .

Lemma 7.2. Let M ∈ Kµ, M ≤M ′ and dim(M ′/M) = 1. Then, M ′ ∈ Kµ.

Proof. Assume M ′ 6∈ Kµ and (ei) is a difference sequence in M ′ for a prealge-
braic code c with base b witnessing this fact. Since dim(M ′/M) = 1 and nc ≥ 2,
no ei is an M–generic realization. By the choice of µ(c) and Lemma 5.4 we may
assume that b ∈ dcleq(M). By Lemma 5.3 we conclude that all ei lie in M .
Contradiction.

Lemma 7.3. Let M ′ be a free amalgam of M and A over B and (ei) a difference
sequence in M ′. Then there is a derived sequence with base in acleq(M) or a
derived sequence with base in acleq(A).

Actually we find the base in dcleq(M), dcleq(A) or acleq(B).

Proof. Let b be the base of s = (ei). If no derivation has a base in dcleq(M),
Lemma 5.4 and M(iii) yield a subsequence s′ of length λ(0,mc +1, c)+1 which
is a Morley sequence of φc(x, b) over M . Again by 5.4, applied to M ′/A, if there
is no derivation with base in dcleq(A), there is a subsequence s′′ of s′ of length
mc + 1, say e0, . . . , emc , which is also a Morley sequence of φc(x, b) over A. Set
E = {e0, . . . , emc−1}. Hence, b ∈ dcleq(E) and

emc |̂
b

M,E , emc |̂
b

A,E .

Write every e ∈ E as the sum of an element of M and an element of A. Define
EM to be the set of all elements in M which occur as summands, and likewise
EA, and set E′ = EM ∪ EA. Then also b ∈ dcleq(E′) and, since E′ and E are
interdefinable over M and as well as over A, we have

emc |̂
b

M,E′ , emc |̂
b

A,E′ ,

which implies
emc |̂

B,E′
M , emc |̂

B,E′
A .

Furthermore
M |̂

B,E′
A .

Write emc = m + a for m ∈ M and a ∈ A. Then emc , m, and a are pairwise
independent over B,E′. Fix i = 1, 2. Then φci(x, bi) is a group formula for
a definable group Gi and bi is the canonical parameter of Gi. Moreover, a is
a generic element of an acleqi(B,E′)–definable coset of Gi and bi is definable
from the canonical base of p = tpi(a/ acleqi(B,E′)). Note that a |̂

B,EA
E′.

So the canonical base of p is in acleqi(A), hence b ∈ acleq(A). By symmetry
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b ∈ acleq(M), and since M and A are independent over B, this yields b ∈
acleq(B).

We call M ∈ Kµ rich, if for all finite B ≤ M and all finite B ≤ A ∈ Kµ

there is an B ≤ A′ ≤M , which is B–isomorphic to A. We will show in the next
section (8.3) that rich structures are models of T1 ∪ T2.

Corollary 7.4. There is a unique countable rich structure Kµ. All rich struc-
tures are (L1 ∪ L2)∞,ω–equivalent.

8 The theory T µ

Lemma 8.1. Let M ∈ Kµ, b ∈ dcleq(M), c a prealgebraic code and M ′ a
prealgebraic minimal extension of M , generated by an M–generic realization a
of φc(x, b) as in 5.2. If M ′ does not belong to Kµ, one of the following is true:

(a) M ′ contains a difference sequence (ei) for c whose elements but one lie in
M .

(b) M ′ contains a difference sequence for a prealgebraic code c′ with base b′

which contains a Morley sequence of φc′(x, b′) over M of length µ∗(c′) + 1.

Proof. If M ′ 6∈ Kµ there is a difference sequence (e′i) in M ′ for a prealgebraic
code c′ with base b′. If case (b) does not occur, by M(iv) and Lemma 5.4 we may
assume that b′ ∈ dcleq(M) and furthermore that (e′i) is as in Lemma 6.4. So
nc′ = nc = dim(M ′/M) and we have He′µ(c′)+m = a for some H ∈ Glnc(F ) and
m ∈ M . By C(vi) there is a d ∈ dcleq(M) with φci(x + m, bi) ∼kci φci(x, di)
(i = 1, 2). Then He′µ(c′) is an M–generic realization of φc(x, d), i.e. e′µ(c′) is
an M–generic realization of φcH (x, d). By C(ix) there is a prealgebraic code
c′′ which is equivalent to cH . We have φcH (x, d) ≡ φc′′(x, b′′) for some b′′ ∈
dcleq(M). By C(viii) and C(iv) we conclude c′′ = c′ and b′′ = b′.

Finally note that (e′i) is a difference sequence for cH . So (ei) = (He′i) is the
desired difference sequence for c as in (a).

Corollary 8.2.

1. Let c be a prealgebraic code. That a structure M ∈ K contains no difference
sequence for c can be expressed by a single sentence αc.

2. Let c be a prealgebraic code, M ∈ Kµ a model of T1∪T2. That no extension
of M in Kµ is generated by a generic realization of some φc(x, b) with
b ∈ dcleq(M) can be expressed by an sentence βc.

3. Let M ∈ Kµ be a model of T1 ∪ T2. That M has no prealgebraic minimal
extension in Kµ can be expressed by a set of sentences.

Proof. 1. Let αc = ¬∃x0, . . . , xµ(c)

(
Ψc1(x0, . . . , xµ(c)) ∧Ψc2(x0, . . . , xµ(c))

)
.

2. Fix i = 1, 2 and let M be a submodel of Ci. Let m ∈ M , φ(x,m) an Li–
formula of Morley rank k and degree 1, and a ∈ Ci be an M–generic realization
of φ(x,m). There is a uniform way to translate a quantifier free property ψ(a,m)
of a,m into a quantifier free property ψ∗(m) of m: Set

ψ∗(y) = MRx

(
φ(x, y) ∧ ψ(x, y)

) .= k
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This shows that, if M ∈ K and a is an M–generic realization of φc(x, b), then
any L1∪L2–sentence α about 〈M,a〉 can be translated into an L1∪L2–sentence
αc(b) about M .

Now there is only a finite set Cc of codes c′ which can occur in (b) of 8.1
since (µ∗(c′) + 1)nc′ ≤ dim(M ′/M) = nc. So set

βc = ∀yc α
c
c(yc) ∧

∧

c′∈Cc

∀yc′ α
c
c′(yc′).

The variables yc, yc′ are understood to range over appropriate sorts of M eq.

3. This follows from 2. and Lemma 5.1.

We now introduce the theory Tµ described by the following axioms, which
by the above are elementarily expressible.

Axioms of Tµ. M is model of Tµ iff

(i) M ∈ Kµ

(ii) M is a model of T1 ∪ T2

(iii) No prealgebraic minimal extension of M belongs to Kµ.

Theorem 8.3. Rich structures are exactly the ω–saturated models of Tµ.

Proof. Let M be an ω–saturated model of Tµ. In order to show that M is rich,
we consider a finite strong subspace B of M and a minimal extension A ∈ Kµ

of B. We want to find a copy B ≤ A′ ≤M of A/B.

case (I): A/B is algebraic. Since M is a model of T1 ∪ T2, it has no proper
algebraic extension in K. So A′ exists by 7.1.

case (II): A/B is prealgebraic. Since M has no prealgebraic minimal extension,
7.1 forces to obtain a copy of A in M .

case (III): A/B is transcendental. Since A/B is generated by a transcendental
element we have to find an a′ ∈ M which is transcendental over B such that
〈B, a′〉 ≤ M . Since this equivalent to realize a partial type, and since M is
ω–saturated, it suffices to find a′ in an elementary extension M ′ of M . Choose
M ′ uncountable. By 6.3 cld(B) ≤M ′ is countable. For every a′ ∈M ′ \ cld(B),
we have δ(a′/B) = 1 and 〈B, a′〉 ≤M ′.

Assume now that M is rich. We show first that M is a model of Tµ.

Axiom (ii): By Lemma 7.2 there are elements in Kµ of arbitrary finite dimension.
So M is infinite and we need only show that M is algebraically closed in the
sense of T1 and of T2.
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Let a be an element in acl1(M) and transcendental over M in the sense of
T2. Therefore, a is 1–algebraic over a finite subset B of M . We may assume
that B ≤M . Since (by Lemma 7.2) B ≤ 〈B, a〉 ∈ Kµ, there is a copy of a over
B in M . This implies that M acl1–closed. Likewise M is algebraically closed
in the sense of T2.

Axiom (iii): Let M ′ be a prealgebraic minimal extension generated by an M–
generic realization a of φc(x, b). Assume M ′ ∈ Kµ. Choose a finite subspace
C0 ≤M with b ∈ dcleq(C0). Then C0 ≤ 〈C0, a〉. Since M is rich, M contains a
copy e0 of a over C0 with C1 = 〈C0, e0〉 ≤M . Continuing this way we obtain an
infinite Morley sequence e0, e1, . . . of φc(x, b). By P(i), e1− e0, . . . , eµ(c)+1− e0
is a difference sequence for c.

Choose an ω–saturated M ′ ≡M . By the above we know that M ′ is rich. Since
M ′ ≡∞,ω M , this implies that M is ω–saturated.

9 Proof of the Theorem

In this section quantifier elimination for T1 and T2 will no longer be required.
Hence, replace in the class K embeddings by elementary maps in the sense of
T1 and in the sense of T2, which we call bi-elementary maps.

Corollary 9.1. Tµ is complete. Two tuples a and a′ in two models M and M ′

have the same type iff there is bi-elementary bijection

f : cl(a) → cl(a′)

which maps a to a′.

Proof. Kµ is a model of Tµ. So Tµ is consistent. Let M be any model of Tµ.
By theorem 8.3 there is a rich M ′ ≡ M . So M ′ ≡∞,ω Kµ, which proves com-
pleteness.

To prove the second statement choose ω–saturated elementary extensions
M ≺ N and M ′ ≺ N ′. It is easy to see17 that M ≤ N and M ′ ≤ N ′, so “cl”
does not increase.

Since M ′ and N ′ are rich, f is even ∞, ω–elementary.

For the converse suppose that a and a′ have the same type. There is a bi-
elementary map f : cl(a) →M ′ which maps a onto a′. We write A′ for f(cl(a)).
Then d(a) = δ(cl(a)) = δ(A′). It follows d(a′) ≤ d(a) and d(a′) = d(a) by
symmetry. A′ has, like cl(a), no proper subset A′′ which contains a′ and with
δ(A′′) = d(a′). This implies A′ = cl(a′).

Theorem 9.2. Tµ is strongly–minimal and d is the dimension function of the
natural pregeometry on models of Tµ, i.e.

MR(a/B) = d(a/B).
17 If M 6≤ N , there is a tuple a ∈ N with δ(a/M) < 0. We find a finite B ≤ M with

δ(a/B) < 0. This is witnessed by the truth of an L1 ∪L2–formula φ(a, b̄). However, φ(x, b̄) is
not satisfiable in M , whence M 6≺ N .
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Proof. Let a be a single element. Types tp(a/B) with d(a/B) = 0 are algebraic
by Corollary 6.2. It follows from 9.1, that there is only one type with d(a/B) =
1.18 This implies strong minimality. The rest of the claim follows from the fact
that d describes the algebraic closure.

This completes the proof of 1.1.

Proof of Theorem 1.2, 2. Let M be an elementary submodel of N in the sense
of T1 and T2. By Corollary 9.1 we need only show that M is strong in N .
Suppose not and pick a smallest extension M ⊂ H ⊂ N with negative δ(H/M).
We may decompose H/M into a sequence M ≤ K ⊂ H, where δ(K/M) = 0
and H = 〈K, a〉 for some element a with δ(a/K) = −1. Since M is a model of
Axiom (iii), we have M = K. a is algebraic over M in the sense of T1 (and T2),
whence by Axiom (ii) we have a ∈M . Contradiction.

Corollary 9.3. If T1 and T2 are model-complete, then Tµ is also model-
complete.

We now prove the last remark of the introduction. Let T1 and T2 be both the
theory of algebraically closed fields of characteristic p formulated in L1 = {+,¯}
and L2 = {+,⊗}. Let Tµ be a fusion over T0, the theory of Fp–vector spaces.
Let x be transcendental (in the sense of Tµ), xi the i–th power in the sense of
T1 and X = {xi | i ∈ N}. Let S be any subset of X. Then dim(S) = |S| and
tr1(S) ≤ 1. It follows from Theorem 1.2, 1. that tr2(S) ≥ |S| − 1. We claim
that tr2(S) = |S|, which is clear for S = {x0}. Assume the contrary. Then, for
some n > 0, we have tr2(x1 . . . , xn/x0) < n. But xn+1 is also transcendental,
therefore it has the same type as x. So tr2(xn+1, . . . , x(n+1)n/x0) < n. It follows

tr2(x1, . . . , xn, xn+1, . . . , x(n+1)n/x0) < 2n− 1,

which is impossible.

Remark 9.4. E. Hrushovski stated in [1] that the DMP survives the fusion.
M. Hils explained a proof of this fact to us, which shows also that Tµ has the
DMP.
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