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1 Introduction

The aim of this article is to give a short introduction to the Lascar Galois
group GalL(T ) of a complete first order theory T . We prove that GalL(T ) is a
quasicompact topological group in section 5. GalL(T ) has two canonical normal
closed subgroups: Γ1(T ), the topological closure of the identity, and Gal0L(T ),
the connected component. In section 6 we characterize these two groups by the
way they act on bounded hyperimaginaries. In the last section we give examples
which show that every compact group occurs as a Lascar Galois group and an
example in which Γ1(T ) is non–trivial.

None of the results, except possibly Corollary 26, are new, but some technical
lemmas and proofs are. In particular, the treatment of the topology of GalL(T )
in sections 4 and 5 avoids ultraproducts, by which the topology was originally
defined in [6]. Most of the theory expounded here was taken from that article,
and the more recent [7], [4] and [2].

I thank Katrin Tent for reading the manuscript carefully, Markus Tressl, who
found a serious mistake in an earlier version, and Anand Pillay, who helped me
with the proof of Theorem 23.

2 The group

We fix a complete theory T . Let C be a saturated1 model of T , of cardinality
larger than as 2|T |, and let Aut(C) its automorphism group. The subgroup
AutfL(C) generated by all point–wise stabilizers AutM (C) of elementary2 sub-
models M is called the group of Lascar strong automorphisms. AutfL(C) is a

∗Partially supported by the Mittag–Leffler Institute, Stockholm
1T may not have saturated models. In this case we take for C a special model (see [3]

Chapter 10.4) of T and use the cf|C| instead of |C|. Especially we assume that cf|C| > 2|T |.
2In the sequel submodel will always mean elementary submodel.
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normal subgroup of Aut(C). The quotient is the Lascar (Galois) group of C:

GalL(C) = Aut(C)/AutfL(C).

We will show that GalL(C) does not depend on the choice of C.

Lemma 1 Let M and N be two small 3 submodels of C and f an automor-
phism. Then the class of f in GalL(C) is determined by the type of f(M) over
N .

Proof: Let (mi)i∈I be an enumeration of M . By the type of f(M) over N
we mean the type of the infinite tuple (f(mi))i∈I over N . This is a type in
variables (xi)i∈I . We denote by SI(N) the set of all such types over N .

Let g(M) have the same type overN as f(M). Choose an automorphism s which
fixes N and maps f(M) to g(M). Then s is a Lascar strong automorphism, as
is t = (sf)−1g, which fixes M . Now we see that g = sft and f have the same
class in GalL(C). 2

Two possibly infinite tuples a and b from C are said to have the same Lascar
strong type iff f(a) = b for a Lascar strong automorphism f .

Lemma 2 a and b have the same Lascar strong type iff there is a sequence of
tuples a = a0, . . . , an = b and a sequence of small submodels N1, . . . , Nn such
that, for each i, ai−1 and ai have the same type over Ni.

Proof: Clear 2

Corollary 3 a and b have the same Lascar strong type in C if they have the
same Lascar strong type in an elementary extension of C.

Proof: If a0, . . . , Nn exist in an elementary extension of C, we find by satura-
tion in C a sequence a′0, . . . , N

′
n which has the same type over ab as a0, . . . , Nn.

This sequence shows that a and b have the same Lascar strong type in C. 2

Theorem 4 ([6]) GalL(C) depends only on T and not on the choice of C.

Proof: If C′ is another big saturated model of T we can assume that C′ is
an elementary extension of C and of larger cardinality. We can extend every
automorphism f of C to an automorphism f ′ of C′. Since all such f ′ differ only
by elements of AutC(C′), this defines a homomorphism Aut(C) → GalL(C′). If
f Lascar strong, f ′ is Lascar strong as well. Whence we have a well defined
natural map

GalL(C) → GalL(C′),
3of smaller cardinality than C
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which will turn out to be an isomorphism.

To prove surjectivity, fix an automorphism g of C′. Choose two small sub-
models M and N of C. By saturation we find a submodel M ′ of C which has
the same type over N as g(M). There is an automorphism f of C which maps
M to M ′. Extend f to an automorphism f ′ of C′. Then f ′(M) and g(M) have
the same type over N . Whence, by the last lemma f ′ and g represent the same
element of GalL(C′).

Now assume that f ∈ Aut(C) extends to a Lascar strong automorphism f ′

of C′. Fix a small submodel M of C. Then M and f(M) have the same Lascar
strong type in C′, whence also in C by Corollary 3. So M can be mapped to
f(M) by a Lascar strong automorphism of C. Such an automorphism agrees
with f on M , whence f is also strong. This shows that GalL(C) → GalL(C′) is
injective. 2

Definition The Lascar group of T is the quotient

GalL(T ) = Aut(C)/Autf L(C),

where C is any big saturated model of T .

Corollary 5 The cardinality of GalL(T ) is bounded by 2|T |.

Proof: The class of f in GalL(T ) is determined by the type of f(M) over N .
If M and N are chosen to be of cardinality T , there are at most 2|T | possible
types. 2

3 Digression: Lascar strong types and thick for-
mulas

Definition Let θ(x, y) be a formula in two tuples of variables x and y having
the same length. θ(x, y) is thick, if it has no infinite antichain, that is a sequence
of tuples a0, a1, . . . such that C |= ¬ θ(ai, aj) for all i < j.

Clearly θ(x, y) is thick iff there is no indiscernible sequence a0, a1, . . . such that
C |= ¬ θ(a0, a1). With this description it is easy to see that the intersection
of two thick formulas is thick again and that a formulas remains thick if one
interchanges the role of x and y.

Lemma 6 Let Θ(x, y) be the set of all thick formulas in x and y and let a and
b two tuples of the same length. Then the following are equivalent:

a) C |= Θ(a, b)
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b) a and b belong to an infinite indiscernible sequence.

Proof: Assume C |= Θ(a, b). Then, if ψ(x, y) is satisfied by ab, ¬ψ is not thick,
so there is an infinite sequence of indiscernibles a0, a1, . . . such that ψ(a0, a1) is
true. Whence, by compactness, there is one infinite sequence of indiscernibles
such that a0a1 has the same type as ab.
If conversely a, b are the first two elements of an infinite indiscernible sequence
they have to satisfy all thick formulas 2

Lemma 7
1. If C |= Θ(a, b), there is a model over which a and b have the same type.

2. If a and b have the same type over some model, the pair ab satisfies the
relational product Θ ◦ Θ. I.e. there is a tuple a′ such that C |= Θ(a, a′)
and C |= Θ(a′, b).

Proof:
1. Let I be an infinite sequence of indiscernibles and M any small model. Then
there are indiscernibles I ′ over M of the same type as I. Whence there is a
model M ′ of the same type as M over which I is indiscernible. Therefore, if a, b
are the first elements of some I, they have the same type over some model M ′.
Now apply Lemma 6.

A more direct proof, which avoids Lemma 6, uses the observation that two
sequences a and b of the same length have the same type over a model iff ab
satisfies all formulas of the form

∃z ϕ(z) → ∃z (
ϕ(z) ∧

n∧

i=1

ψi(x, z) ↔ ψi(y, z)
)

(1)

for all finite variable tuples z and formulas ϕ(z), ψ1(x, z), . . . , ψn(x, z). All for-
mulas (1) are thick, antichains have length at most 2n.

2. Assume that a and b have the same type over M . If θ is a thick formula, con-
sider a maximal antichain a1, . . . , an for θ in M . Then, since M is an elementary
substructure, a1, . . . , an is also a maximal antichain in C. Whence C |= θ(ai, a)
for some i. Since b has the same type over M , we have C |= θ(ai, b). This proves
that for every finite subset Θ0 of Θ there is an a′ such that C |= Θ0(a′, a) and
C |= Θ0(a′, b). This proves the claim using compactness and the observation
that Θ defines a symmetric relation. 2

Corollary 8 The relation of having the same Lascar strong type is the transitive
closure of the relation defined by Θ. 2

Let π be a type defined over the empty set. A formula θ(x, y) is thick on π if
θ has no infinite antichain in π(C). Let Θπ be the set of all formulas which are
thick over π.
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Corollary 9 Two realizations of π, a and b, have the same Lascar strong type
if the pair (a, b) is in the transitive closure of the relation defined by Θπ.

Proof: Assume that a and b have the same type over a model M . The proof
of Lemma 7 (1) shows that we can assume that M is ω–saturated. If θ is thick
on π, let a1, . . . , an be a maximal antichain for θ in π(M). Then, since is ω–
saturated, a1, . . . , an is also maximal in π(C). Now proceed as in Lemma 7 (2).
2

4 The topology

Let M and N be two small submodels of C. Assign to every automorphism f
of C the type of f(M) over N . This defines a surjective map µ from Aut(C) to
SM (N), the set all types over N of conjugates of M . By Lemma 1 the projection
Aut(C) → GalL(T ) factors through µ:

Aut(C)
µ−→ SM (N) ν−→ GalL(T ).

SM (N), as a closed subspace of SI(N), is a boolean space. We give GalL(T ) the
quotient topology with respect to ν.

To show that this does not depend on the choice of M and N we consider
another pair M ′ and N ′. We may assume that M ⊂M ′ and N ⊂ N ′. The map
SM ′(N ′)−→GalL(T ) then factors as

SM ′(N ′)−→SM (N) ν−→ GalL(T ),

where the first map is restriction of types. Since restriction is continuous and
the spaces are compact, SM (N) carries the quotient topology of SM ′(N ′), which
implies that on GalL(T ) the two topologies, coming from SM ′(N ′) and SM (N),
are the same.

A quotient of a quasicompact space remains quasicompact. So we have

Lemma 10 GalL(T ) is quasicompact. 2

Let p and q be types in SM (N). Two realizations M ′ and M ′′ of p and q
have the same Lascar strong type iff ν(p) = ν(q). Whence, by Corollary 8, the
equivalence relation

p ≈ q ⇔ ν(p) = ν(q)

is the transitive closure of the relation D, where D(p, q) holds if p and q have
realizations M ′ and M ′′ with C |= Θ(M ′,M ′′).

Lemma 11
1. D is a closed subset of SM (N)× SM (N)
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2. ≈ is a Fσ–set, i.e. a countable union of closed sets.

Proof:
1. This is clear, because

D(p, q) ⇔ p(x) ∪ q(y) ∪Θ(x, y) consistent.

2. ≈ is the union of all powers

Dn = D ◦ · · · ◦D︸ ︷︷ ︸
n times

.

So, is suffices to show that all Di are closed. This follows from the fact that,
in compact spaces, the product of two closed relations is closed again. To
see this, note that, for binary relations R and S, R ◦ S is the projection of
{(p, q, r)|R(p, q) ∧ S(q, r)} onto the first and third variable. 2

In general the map SM (N) ν−→ GalL(T ) is not open.4 But it has a property
that comes close to openness. Define for p ∈ SM (N)

D[p] = {q ∈ SM (N) | D(p, q)}.

Lemma 12 If D[p] is contained in the interior of some subset O ⊂ SM (N),
then ν(p) is an inner point of ν(O).

Proof: D[p] is the intersection of all

Dδ[p] =
{
q ∈ SM (N)

∣∣ p(x) ∪ q(y) ∪ {δ(x, y)} consistent
}
, (δ ∈ Θ).

By compactness some Dδ[p] is contained in (the interior of) O.

Claim 1: p is an inner point of Dδ[p].

Proof: Since δ is thick, there is a finite set {H1, . . . , Hn} of realizations of p
such that for every other realization H we have C |= δ(Hi,H) for some i. By
compactness this is true for every realization H of any p′ contained in a small
enough neighborhood C of p, which implies that C is contained in Dδ[p].

After replacing O by ν−1(νO) we can assume that O is closed under ≈ (i.e.
is a union of ≈–classes.) We set

U = {q ∈ SM (N) | Dδ[q] ⊂ O for some δ ∈ Θ}.
4If Aut(C) is endowed with the topology of point–wise convergence, µ becomes continuous

(see Lemma 29). If ν were always open, Aut(C) → GalL(T ) would be open too: If a, b are
two (finite) tuples, choose N, M in such a way that a, b ∈ M = N . Then the basic open
set {f ∈ Aut(C)|f(a) = b} will be mapped onto an open subset of SM (N) and whence, by
assumption, onto an open subset of GalL(T ). Whence, the closedness of AutfL(C) would
imply that GalL(T ) is hausdorff. That this is not true shows one of the examples in [2]
(Th(M∗) in Proposition 4.5).
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U contains p.

Claim 2: U is closed under ≈.

Proof: Let q be in U , witnessed by Dδ[q] ⊂ O, and q ≈ r. Then a realization H
of q is mapped by a Lascar strong automorphism f to a realization f(H) = K
of r. In order to show that r belongs to U we fix an element r′ of Dδ[r]. We
have then a realization K ′ of r′ such that C |= δ(K,K ′). Let q′ be the type of
H ′ = f−1(K ′) over M . Since C |= δ(H,H ′), q′ belongs to Dδ[q] and therefore
to O. Since q ≈ q′ and O is closed under ≈, we have q′ ∈ O. It follows Dδ[r] ⊂ O.

Claim 3: U is open.

Proof: U is a subset of the interior of O by Claim 1. Since U is closed under ≈,
it is contained in the open set

U ′ = {q ∈ SM (N) | D[q] ⊂ interior(O)},
which, by compactness, equals

U ′′ = {q ∈ SM (N) | Dδ[q] ⊂ interior(O) for some δ ∈ Θ}.
But U ′′ is contained in U , which shows that U = U ′.

By Claims 2 and 3 the projection of U is an open subset of ν(O) and contains
ν(p). This completes the proof of Lemma. 2

Corollary 13 If L is countable, GalL(T ) has a countable basis.

Proof: If L is countable we can choose countable M and N . SM (N) has then
a countable base, B. We can assume that B is closed under finite unions. Let
us show that the set of all ν(B)◦, (B ∈ B), is a basis of GalL(T ). Let Ω be
open and α ∈ Ω. Choose a preimage p of α and a basic open set B, such that
D[p] ⊂ B ⊂ ν−1(Ω). This is possible, since B is compact and B closed under
finite unions. Then ν(B)◦ ⊂ Ω is an open neighborhood of p. 2

The following corollary is a reformulation of Corollary 3.5 in [2].

Corollary 14 Let X be a subset of GalL(T ). Then

X = ν(ν−1(X)).

Proof: Since ν is continuous the right hand side lies inside X. Let ν(p) be
an element of GalL(T ) which does not belong to ν(ν−1(X). Then the whole
≈–class of p, which contains D[p], is disjoint from ν−1(X). By Lemma 12 the
complement of ν−1(X) is mapped to a neighborhood of ν(p), which is disjoint
from X. This shows ν(p) 6∈ X. 2
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Corollary 15 GalL(T ) is hausdorff iff ≈ is closed.

Proof: “GalL(T ) hausdorff ⇒ ≈ closed” is an easy consequence of the
continuity of ν.

Now assume that ≈ is closed. Consider two different elements x, y of GalL(T ).
Since ≈ is closed, we can separate each element of ν−1(x) from each element
of ν−1(y) by a pair of neighborhoods which projects onto disjoint subsets of
GalL(T ). But ν−1(x) and ν−1(y) are compact. This implies that there is one
pair of open sets, O and U , which separate ν−1(x) and ν−1(y) and have disjoint
projections ν(O) and ν(U), which are, by the lemma, neighborhoods of x and
y. 2

We will see in section 7 (Theorem 28) that GalL(T ) need not to be hausdorff.

5 The topological group

Theorem 16 (Lascar) GalL(T ) is a topological group.

For the proof we fix again two small submodels M and N and consider the
natural mappings

Aut(C)
µ−→ SM (N) ν−→ GalL(T ).

Lemma 17 The projections of multiplication

M =
{(
µ(f), µ(g), µ(fg)

) ∣∣ f, g ∈ Aut(C)
}

and of inversion
I =

{(
µ(f), µ(f−1)

) ∣∣ f ∈ Aut(C)
}

are closed subset of SM (N)×SM (N)×SM (N) and of SM (N)×SM (N), respec-
tively.

Proof: We introduce two unary function symbols F and G and express the
fact that F are G automorphisms by the L ∪ {F,G}–theory A(F,G). Then
(p, q, r) belongs to M iff there are are functions f, g : C→ C which satisfy the
theory

B(F,G, p, q, r) = A(F,G) ∪ p(F (M)) ∪ q(G(M)) ∪ r(F (G(M))).

Since C is saturated, B(F,G, p, q, r) can be satisfied in C if it is consistent with
the theory of CM,N . This is a closed condition on p, q, r.

The closedness of I is similar. 2
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The graphs of the multiplication and inversion in GalL(T ) are the projec-
tions of M and I. If GalL(T ) is hausdorff, the projections are closed, which,
by compactness, implies that multiplication and inversion are continuous in
GalL(T ).

For the general case we need the following notation: For two subsets of A
and B of SM (N) define

A ∗B =
{
r ∈ SM (N)

∣∣ (p, q, r) ∈M for a pair (p, q) ∈ A×B}.

Lemma 18 If A and B are closed and A ∗ B is contained in the open set W ,
there are neighborhoods U and V of A and B such that U ∗ V ⊂W .

Proof: Let W ′ be the complement of W . A×B is disjoint from the projection
C of

M∩ (
SM (N)× SM (N)×W ′)

on the first two coordinates. Since C is closed (and A and B are compact) there
are neighborhoods U and V of A and B such that U × V is disjoint from C. It
follows that U ∗ V ⊂W . 2

We can now prove that multiplication in GalL(T ) is continuous. Let α = ν(p)
and β = ν(q) be elements of GalL(T ) and Ω an open neighborhood of αβ. Then

D[p] ∗D[q] ⊂ ν−1(α) ∗ ν−1(β) ⊂ ν−1(αβ) ⊂ ν−1(Ω).

By the last lemma there neighborhoods U and V of D[p] and D[q], respectively,
such that U ∗ V ⊂ ν−1(Ω). This implies ν(U)ν(V ) ⊂ Ω. Finally, we remark
that, by Lemma 12, ν(U) and ν(V ) are neighborhoods of α and β.

The continuity of inversion is proved in the same manner, which completes
the proof of the theorem.

6 Two subgroups

GalL(T ) has two canonical normal subgroups:

• Γ1(T ), the closure of {1}.
• Gal0L(T ), the connected component of 1.

Since GalL(T ) is quasicompact, we have

Lemma 19
1. The quotient GalcL(T ) = GalL(T )/Γ1(T ) is a compact group, the closed

Galois group of T .

2. Gal0L(T ) is the intersection of all closed (normal) subgroups of finite index.
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Proof: GalcL(T ) is quasicompact and hausdorff, i.e. compact. For the second
part, note that the quotient GalL(T )/Gal0L(T ) is totally disconnected ([12, §2])
and compact, whence a profinite group. In a profinite group the intersection of
all normal closed subgroups of finite index is the identity. 2

An imaginary element of C is a class of a ∅–definable equivalence relation
on a cartesian power Cn. Automorphisms of C act in a natural way on imagi-
naries. An imaginary with only finitely many conjugates under Aut(C) is called
algebraic.

Let us prove that algebraic imaginaries are fixed by Lascar strong automor-
phisms: Let a/E be an algebraic imaginary with k conjugates. This means that
E partitions the set of all conjugates of a into k classes. It follows that the type
of a contains a formula ϕ(x) whose realization set meets exactly k equivalence
classes. Let f fix the model M . Then ϕ(M) meets the same classes as ϕ(C),
which implies that a/E contains an element b of M , which must also belong to
f(a)/E. It follows that a/E = f(a)/E.

This result extends easily to hyperimaginaries. Hyperimaginaries are equiv-
alence classes of type–definable equivalence relations E, which are defined by a
set of formulas Φ without parameters:

E(a, b) ⇔ C |= Φ(a, b).

a and b are, possible infinite, tuples of elements of C, of length smaller than |C|.
A hyperimaginary is bounded if it has less than |C| conjugates.

Lemma 20 Bounded hyperimaginaries are fixed by Lascar strong automor-
phisms.

Proof: Let a/E be a bounded hyperimaginary and E defined by Φ(x, y). Then
Φ ⊂ Θπ, where π = tp(a), since otherwise some θ ∈ Φ would have antichains in
π(C) of arbitrary length, contradicting the assumption that a/E is bounded. If
f is Lascar strong, a and f(a) have the same Lascar strong type. By Corollary 9,
E(a, f(a)). 2

If, conversely, a hyperimaginary h is fixed by all Lascar strong automorphisms,
f(h) is determined by the class of f in GalL(T ). Whence h has no more than
2|T |–many conjugates and is bounded.

We conclude that GalL(T ) acts on bounded hyperimaginaries in a well de-
fined way.

Theorem 21
1. Γ1(T ) is the set of all elements of GalL(T ) which fix all bounded hyper-

imaginaries.
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2. Gal0L(T ) is the set of all elements of GalL(T ) which fix all algebraic imag-
inaries.

Proof:
1. Let a/E be a bounded hyperimaginary and Γ ≤ GalL(T ) the stabilizer of
a/E. The preimage of Γ in SM (N) is

ν−1(Γ) = {tp(f(M)/N) | f ∈ Aut(C), E(f(a), a)}.
Choose M containing a, let N = M and E be axiomatized by Φ. Then

ν−1(Γ) = {p(x) ∈ SM (N) | Φ(x′, a) ⊂ p(x)},
where the variables x′ are a subtuple of x, as a is a subtuple of (mi), the
enumeration of M . Whence Γ is closed and we conclude Γ1(T ) ⊂ Γ. This shows
that the elements of Γ1(T ) fix all bounded imaginaries.

For the converse consider the inverse image G1 of Γ1(T ) in Aut(C). For
|T |–tuples a, b let E(a, b) denote the equivalence relation of being in the same
G1–orbit. Since the index of G1 is bounded by 2|T |, E has at most 2|T | classes.
Since Γ1(T ) is closed, E is type–definable. To see this, write the closed set
ν−1(Γ1(T )) as {p(x) ∈ SM (N) | Ψ(x) ⊂ p(x)} for a set Ψ(x) of L(N)–formulas.
Then

E(a, b) ⇔ for some f ∈ Aut(C) C |= f(a) = b ∧ Ψ(f(M)).

This shows, by an argument similar to that in the proof of Lemma 17, that E
is can be defined by a set of formulas with parameters from M and N . Since
Γ1(T ) is a normal subgroup, G1 is a normal subgroup of Aut(C). This implies
that E is invariant under automorphisms, and whence can be defined by a set
of formulas without parameters.

Now assume that α ∈ GalL(T ) fixes all bounded hyperimaginaries. Take a
model K of cardinality |T | and consider it as a |T |–tuple. Then K/E is a
bounded hyperimaginary and fixed by α. This means that α is represented by
an automorphism which agrees on K with an automorphism f from G1. Since
K is a model, this implies that α is represented by f and belongs to Γ1(T ).

2. Let i be an algebraic imaginary and Γ the stabilizer of i in GalL(T ). Γ is
closed and has finite index, since the index equals the number of conjugates of
i. It follows that Gal0L(T ) ⊂ Γ. Thus the elements of Gal0L(T ) fix all algebraic
imaginaries.

For the converse it suffices to show that every normal closed Γ ≤ GalL(T ) of
finite index is the stabilizer of an algebraic imaginary. The first part of the proof
shows that Γ, being a normal5 closed subgroup, is the stabilizer of a bounded

5A slight variation of the argument shows that normality is not necessary: Let G be the
preimage of Γ, and K a model of size |T |. Define E(a, b) to be true if a = b or, for some
f ∈ Aut(C) and g ∈ G, f(K) = a and fg(K) = b. Then K/E is a bounded hyperimaginary
with Γ as its stabilizer. See [7, 4.12].
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hyperimaginary a/E. Since Γ has finite index, a/E has only a finite number
of conjugates. We will show that a/E has the same stabilizer as an algebraic
imaginary a/F . (If a is an infinite tuple, we can replace it by the finite subtuple
of elements which occur in F .)

Let E be defined by Φ and let a1/E, . . . , an/E be the different conjugates of
a/E. By compactness there is a symmetric formula6 θ ∈ Φ such that no pair
(ai, aj) (i 6= j) satisfies θ2 = θ◦θ.7 This means that the sets θ(ai,C) are disjoint.
Since they cover the set of conjugates of a, there is a formula ϕ(x) satisfied by
a such that the intersections

Di = ϕ(C) ∩ θ(ai,C)

form a partition of ϕ(C). In order to ensure that this partition is invariant
under automorphisms, we choose θ ∈ Φ so small that no pair (ai, aj) satisfies
θ4. This implies that θ2(c, d) is never true for c ∈ Di and d ∈ Dj and, therefore,
that

F (x, y) = (¬ϕ(x) ∧ ¬ϕ(y)) ∨ (ϕ(x) ∧ ϕ(y) ∧ θ2(x, y))
defines an equivalence relation, with classes ¬ϕ(C), D1, . . . , Dn. Thus a/F is an
algebraic imaginary. Since a/E and a/F contain the same conjugates of a, they
have the same stabilizer. 2

Corollary 22
1. GalcL(T ) is the automorphism group of the set of all bounded hyperimag-

inaries of length |T |.
2. GalL(T )/Gal0L(T ) is the automorphism group of the set of all algebraic

imaginaries.

2

It was shown in [7] that every bounded hyperimaginary has the same (point-
wise) stabilizer as a set of bounded hyperimaginaries of finite length. So GalcL(T )
is the automorphism group of the set of all bounded hyperimaginaries of finite
length.

The set of algebraic imaginaries is often called acleq(∅). The group

GalL(T )/Gal0L(T ) = Aut(acleq(∅))
is the Galois group introduced by Poizat in [9].

For stable T two tuples a and b which have the same strong type (i.e. the
same type over acleq(∅)) have the same type over any model which is independent
from ab. It follows that Gal0L(T ) = 1. This was extended to supersimple theories
in [1]. Whether this is true for all simple8 theories is an open problem. All we
know is Kim’s result ([5]) that Γ1(T ) = 1 for simple T .

6Assume Φ closed under conjunction.
7Recall that θ(x, y) is the formula ∃z θ(x, z) ∧ θ(z, y).
8See [11] for an introduction to simple theories.
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7 Two Examples

The first part of this section is concerned with the proof of the following un-
published result of E. Bouscaren, D. Lascar and A. Pillay:

Theorem 23 Any compact Lie group is the Galois group of a countable com-
plete theory.

First we need a lemma on O-minimal structures. Recall that a structure M
with a distinguished linear order < is O-minimal if every definable subset of
M is a union of finitely many points and intervals with endpoints in M . Note
that every structure elementarily equivalent to an O-minimal structure is itself
O-minimal.

Lemma 24 Every automorphism of a big saturated O-minimal structure is Las-
car strong.

Proof: Let C be a big saturated O-minimal structure. We prove that any two
small submodels M,N of the same type have the same type over some model K.
This implies, as in the proof of Lemma 1, that every automorphism which maps
M to N is the product of an automorphism which fixes M and an automorphism
which fixes K.

It is enough (and equivalent, see the proof of Lemma 7 (1)) to show the
following : Every consistent formula ϕ(z) has a realization c over which M and
N have the same type.

We prove this by induction on the length of z. Assume that z consists of
a tuple z1 and a single variable z2. By induction there is a realization c1 of
∃z2ϕ(z1, z2) over which M and N have the same type. Let ψ(m, c1, z2) be any
formula over Mc1, and let the tuple n ∈ N correspond to m. By O-minimality,
and since m and n have the same type over c1, either both ψ(m, c1,C) and
ψ(n, c1,C) contain a non–empty final segment of ϕ(c1,C) or ¬ψ(m, c1,C) and
¬ψ(n, c1,C) contain a non–empty segment. If we choose c2 in the intersection
of all these segments, c = c1c2 realizes ϕ(z) and M and N have the same type
over c. 2

Now fix a compact Lie group G. The group G together with its structure of
a real analytic manifold can be defined inside an expansion R of the field R by
a finite number of analytic functions which are defined on bounded rectangles.
By a result of van den Dries R is O–minimal9 (see [10]).

Let R∗ a big saturated extension of R and G∗ the resulting extension of G.
The intersection µ of all ∅–definable neighborhoods of the unit element of G∗ is

9As A. Pillay has told me, compact Lie groups are semi–algebraic. This means that here
(and in the proof of Corollary 26) one can actually assume that R is the field of reals with a
finite tuple of named parameters.
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the normal subgroup of infinitesimal elements. The compactness of G implies
that every element of G∗ differs by an infinitesimal from some element of G.
Whence G∗ is the semi–direct product of G and µ.

Lemma 25 µ is the set of all commutators [ϕ, h] = h−1ϕ(h), where h ∈ G∗

and ϕ ∈ Aut(R∗).

Proof: Let ϕ be an automorphism of R∗ and let h differ from h0 ∈ G by an
infinitesimal ε. Since ϕ fixes R, it fixes h0. Whence h−1ϕ(h) = (h0ε)−1ϕ(h0ε) =
ε−1ϕ(ε) is infinitesimal.

Let conversely ε ∈ µ be given. Consider a generic type p ∈ S(∅) of G (cf. [8]).
This means that p can be axiomatized by formulas which define (non–empty)
open subsets O(G) of G. Each O(G∗) contains two elements h and hε (pick any
h ∈ O(G)). Whence, by saturation, p has two realizations h and hε. Choose an
automorphism ϕ with ϕ(h) = hε. Then ε = h−1ϕ(h).10 2

Consider the two–sorted structure

M = (R, X, ·)

where · is a regular action of G on the set X. We will show that G is the Galois
group of the complete theory of M.

Let M∗ = (R∗, X∗) be a big saturated elementary extension of M. To
describe the automorphisms of M∗ we fix a base point x0 ∈ X∗. Any element
of X∗ can then uniquely be written as

x = h · x0

for some h ∈ G∗. We extend each automorphism ϕ of R∗ to M∗ by

ϕ(x) = ϕ(h) · x0.

The automorphisms which leave R∗ fixed have the form g, where

g(x) = hg−1 · x0.

This implies that every automorphism of M∗ is a product

Φ = g ϕ.

Note the commutation rule ϕg = ϕ(g)ϕ.

Elementary substructures of M∗ have the form (R′, G′ · x), where R′ is an
elementary substructure of R∗ and x = h · x0 is any element of X∗. Therefore
an automorphism fixes a submodel iff it can be written as h

−1
ϕh, for some ϕ

10A variant of the proof shows that one can find a ϕ which fixes an elementary submodel
of R∗.
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which fixes an elementary submodel of R∗. It follows that an automorphism is
Lascar strong iff it is a product of conjugates of automorphisms of the form ϕ,
for Lascar strong ϕ.

By Lemma 24 all ϕ are Lascar strong. The formula

h
−1
ϕh = [ϕ, h]ϕ,

together with the last Lemma, implies that Φ = g ϕ is Lascar strong iff g is
infinitesimal. We conclude that

g 7→ class of g

defines an isomorphism ι : G→ GalL(M∗).11

Finally we have to prove that ι is a homeomorphism. Let U(G) be a ∅–
definable neighborhood of 1 ∈ G. Consider the map ν : SM(M) → GalL(M∗).
Then ν−1ι(U(G)) consists of those tp(f(M)/M) for which M∗ |= U(f(1)).
Whence, if 1 has index 1 in the enumeration of M,

ν−1ι(U(G)) = {p ∈ SM(M) | U(x1) ∈ p}.
This proves that ι(Un) is open. So ι is an open map. Since GalL(M∗) is
quasicompact and G is hausdorff, ε must also be continuous. This completes
the proof of Theorem 23.

Corollary 26 Every compact group is the Galois group of a complete theory.

Proof: Let G be a compact group. G is the direct limit of a directed system
(Gi, fi,j)i≤j∈I of compact Lie groups ([12, §25]). Again let R be an expansion
of the reals by bounded analytic functions, in which all the Gi and the maps
fij can be defined. The elements of G are then given by certain infinite tuples
g = (gi)i∈I from the direct product of the Gi.

G will be the Galois group (of the complete theory) of the many–sorted
structure

M = (R, Xi, f
′
ij)i≤j∈I ,

where the directed system of sets (Xi, f
′
i,j)i≤j∈I is a copy of (Gi, fi,j)i≤j∈I and

each Gi operates (regularly) on Xi as it operates on itself by left multiplication.

Let again M∗ be a big saturated elementary extension of M and G∗ the
inverse limit of the G∗i . We call an element ε = (εi) of G∗ infinitesimal if all its
components are infinitesimal. Let µ the subgroup of all infinitesimals. It is easy
to see that G is isomorphic to the quotient G∗/µ.

Fix a base point x0 = (x0i)i∈I in the (non–empty) inverse limit of the X∗
i .

Then every automorphism of M∗ has the form Φ = g ϕ for ϕ ∈ Aut(R∗) and
11The proof shows that two elements of X∗ differ by an infinitesimal if they have the same

Lascar strong type. It is easy to verify that this happens iff they have the same type over a
submodel of M∗.
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g ∈ G∗, where g and ϕ are defined as in the proof of the theorem. Thus, it
suffices to show that Φ is Lascar strong iff g is infinitesimal.

Assume first that Φ is Lascar strong. Then each gi is infinitesimal, since Φ
restricted to (R∗, Xi) is Lascar strong. Conversely, if g is infinitesimal, we find
for every i an hi ∈ Gi such that hi and higi have the same type. A compactness
argument shows that we can find the sequence (hi) in G∗. Then h and hg
have the same type. Let ψ be an automorphism of R∗ with ψ(h) = hg. As in
the proof of the theorem, it is easy to see that gψ = h

−1
ψ h is Lascar strong.

Whence also Φ = (h
−1
ψ h)ψ−1ϕ is Lascar strong. 2

We construct our second example from the circle group S, the unit circle in
the complex number plane. Let us fix some notation: λs denotes multiplication
by s. R is the cyclic ordering on S, where R(r, s, t) holds if s comes before t in
the counter–clockwise ordering of S \ {r}.

Fix a natural number N , write σN for λ 2πi
N

and consider the structure

SN = (S, R, σN ).

Let CN a big saturated elementary extension and f an automorphism of CN .
If f is Lascar strong, let |f | be the smallest n such that f is the product of n
automorphisms which fix elementary submodels. If f is not Lascar strong, write
|f | = ∞.

We will make use of the following lemma, which can be proved from Lemma 24
(see [2] for details).

Lemma 27
1. Every automorphism of CN is the product of some σn

N and some f with
|f | ≤ 2.

2. |σn
N | = |n|+ 2, whenever 0 < |n| ≤ N

2 .

Let S∞ be the disjoint union of the S1,S2, . . . viewed as a many–sorted struc-
ture12 with saturated extension C∞ = (C1,C2, . . .).

Theorem 28 ([2]) For each N let CN be the N–element cyclic group with
generator cN . Let B be the group of all sequences (ceN

N ) with a bounded sequence
(eN ) of exponents. Then

GalL(C∞) ∼=
∏

N

CN/B.

GalL(C∞) carries the indiscrete topology.

12We take also the disjoint union of the languages.
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Proof: The map (ceN

N ) 7→ (σeN

N ) defines a map from
∏

N CN to Aut(C∞),
which yields a homomorphism

µ :
∏

N

CN → GalL(C∞).

Let (fN ) be any automorphism of C∞. If we apply part 1 of the Lemma to each
component we see that we can write (fN ) as a product of some (σeN

N ) and two
automorphisms which fix a model. This shows that µ is surjective.

Let (ceN

N ) be an arbitrary element of
∏

N CN . We can assume that |eN | ≤ N
2 .

Then by part 2 of the lemma it is immediate that (σeN

N ) is Lascar strong iff (eN )
is bounded, which means that B is the kernel of µ.

It remains to show that the topology of GalL(C∞) is indiscrete, or

GalL(C∞) = Γ1(C∞).

The preimage of Γ1(C∞) in Aut(C∞) is, by the next Lemma, a closed subgroup,
which contains Autf L(C∞). The automorphisms which fix almost every CN are
Lascar strong and form a dense subset of Aut(C∞). Thus the preimage of
Γ1(C∞) is the whole Aut(C) group. 2

We conclude with a general lemma. Let M be a model of T and consider
the topology of point–wise convergence on Aut(M), with basic open sets

Ua,b = {f | f(a) = b },

where a, b are finite tuples from M .

Lemma 29 The natural map Aut(M) → GalL(T ) is continuous.

Proof: Let Ω be a neighborhood of the image of f in GalL(T ). The preimage
of Ω under13 ν : SM (N) → GalL(T ) contains a basic neighborhood

O = {p | ϕ(x) ∈ p}

of tp(f(M)/N). Let a be the tuple of elements of M which are enumerated by
the free variables of ϕ. Then

O = {tp(g(M)/N) | C |= ϕ(g(a))} ⊂ {tp(g(M)/N) | g(a) = f(a)}.

Whence Ua,f(a) is a neighborhood of f which is mapped into Ω. 2

13N can be any small model.
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