Introduction to the Lascar Group

Martin Ziegler*

June 13, 2001

1 Introduction

The aim of this article is to give a short introduction to the Lascar Galois group $\operatorname{Gal}_{L}(T)$ of a complete first order theory T. We prove that $\operatorname{Gal}_{L}(T)$ is a quasicompact topological group in section 5. $\operatorname{Gal}_{L}(T)$ has two canonical normal closed subgroups: $\Gamma_{1}(T)$, the topological closure of the identity, and $\operatorname{Gal}_{L}^{0}(T)$, the connected component. In section 6 we characterize these two groups by the way they act on bounded hyperimaginaries. In the last section we give examples which show that every compact group occurs as a Lascar Galois group and an example in which $\Gamma_{1}(T)$ is non-trivial.

None of the results, except possibly Corollary 26, are new, but some technical lemmas and proofs are. In particular, the treatment of the topology of $\operatorname{Gal}_{\mathrm{L}}(T)$ in sections 4 and 5 avoids ultraproducts, by which the topology was originally defined in [6]. Most of the theory expounded here was taken from that article, and the more recent [7], [4] and [2].

I thank Katrin Tent for reading the manuscript carefully, Markus Tressl, who found a serious mistake in an earlier version, and Anand Pillay, who helped me with the proof of Theorem 23.

2 The group

We fix a complete theory T. Let \mathbb{C} be a saturated¹ model of T, of cardinality larger than as $2^{|T|}$, and let $\operatorname{Aut}(\mathbb{C})$ its automorphism group. The subgroup $\operatorname{Autf}_{\mathrm{L}}(\mathbb{C})$ generated by all point-wise stabilizers $\operatorname{Aut}_{M}(\mathbb{C})$ of elementary² submodels M is called the group of *Lascar strong* automorphisms. $\operatorname{Autf}_{\mathrm{L}}(\mathbb{C})$ is a

^{*}Partially supported by the Mittag–Leffler Institute, Stockholm

¹T may not have saturated models. In this case we take for \mathbb{C} a *special* model (see [3] Chapter 10.4) of T and use the cf $|\mathbb{C}|$ instead of $|\mathbb{C}|$. Especially we assume that cf $|\mathbb{C}| > 2^{|T|}$.

 $^{^{2}}$ In the sequel *submodel* will always mean *elementary submodel*.

normal subgroup of $Aut(\mathbb{C})$. The quotient is the Lascar (Galois) group of \mathbb{C} :

$$\operatorname{Gal}_{\mathrm{L}}(\mathbb{C}) = \operatorname{Aut}(\mathbb{C})/\operatorname{Autf}_{\mathrm{L}}(\mathbb{C}).$$

We will show that $\operatorname{Gal}_{L}(\mathbb{C})$ does not depend on the choice of \mathbb{C} .

Lemma 1 Let M and N be two small ³ submodels of \mathbb{C} and f an automorphism. Then the class of f in $\operatorname{Gal}_{L}(\mathbb{C})$ is determined by the type of f(M) over N.

PROOF: Let $(m_i)_{i \in I}$ be an enumeration of M. By the type of f(M) over N we mean the type of the infinite tuple $(f(m_i))_{i \in I}$ over N. This is a type in variables $(x_i)_{i \in I}$. We denote by $S_I(N)$ the set of all such types over N.

Let g(M) have the same type over N as f(M). Choose an automorphism s which fixes N and maps f(M) to g(M). Then s is a Lascar strong automorphism, as is $t = (sf)^{-1}g$, which fixes M. Now we see that g = sft and f have the same class in $\operatorname{Gal}_{L}(\mathbb{C})$.

Two possibly infinite tuples a and b from \mathbb{C} are said to have the same Lascar strong type iff f(a) = b for a Lascar strong automorphism f.

Lemma 2 a and b have the same Lascar strong type iff there is a sequence of tuples $a = a_0, \ldots, a_n = b$ and a sequence of small submodels N_1, \ldots, N_n such that, for each i, a_{i-1} and a_i have the same type over N_i .

PROOF: Clear

Corollary 3 a and b have the same Lascar strong type in \mathbb{C} if they have the same Lascar strong type in an elementary extension of \mathbb{C} .

PROOF: If a_0, \ldots, N_n exist in an elementary extension of \mathbb{C} , we find by saturation in \mathbb{C} a sequence a'_0, \ldots, N'_n which has the same type over ab as a_0, \ldots, N_n . This sequence shows that a and b have the same Lascar strong type in \mathbb{C} . \Box

Theorem 4 ([6]) $\operatorname{Gal}_{L}(\mathbb{C})$ depends only on T and not on the choice of \mathbb{C} .

PROOF: If \mathbb{C}' is another big saturated model of T we can assume that \mathbb{C}' is an elementary extension of \mathbb{C} and of larger cardinality. We can extend every automorphism f of \mathbb{C} to an automorphism f' of \mathbb{C}' . Since all such f' differ only by elements of $\operatorname{Aut}_{\mathbb{C}}(\mathbb{C}')$, this defines a homomorphism $\operatorname{Aut}(\mathbb{C}) \to \operatorname{Gal}_{L}(\mathbb{C}')$. If f Lascar strong, f' is Lascar strong as well. Whence we have a well defined natural map

$$\operatorname{Gal}_{\operatorname{L}}(\mathbb{C}) \to \operatorname{Gal}_{\operatorname{L}}(\mathbb{C}'),$$

³of smaller cardinality than \mathbb{C}

which will turn out to be an isomorphism.

To prove surjectivity, fix an automorphism g of \mathbb{C}' . Choose two small submodels M and N of \mathbb{C} . By saturation we find a submodel M' of \mathbb{C} which has the same type over N as g(M). There is an automorphism f of \mathbb{C} which maps M to M'. Extend f to an automorphism f' of \mathbb{C}' . Then f'(M) and g(M) have the same type over N. Whence, by the last lemma f' and g represent the same element of $\operatorname{Gal}_{L}(\mathbb{C}')$.

Now assume that $f \in \operatorname{Aut}(\mathbb{C})$ extends to a Lascar strong automorphism f'of \mathbb{C}' . Fix a small submodel M of \mathbb{C} . Then M and f(M) have the same Lascar strong type in \mathbb{C}' , whence also in \mathbb{C} by Corollary 3. So M can be mapped to f(M) by a Lascar strong automorphism of \mathbb{C} . Such an automorphism agrees with f on M, whence f is also strong. This shows that $\operatorname{Gal}_{L}(\mathbb{C}) \to \operatorname{Gal}_{L}(\mathbb{C}')$ is injective. \Box

Definition The Lascar group of T is the quotient

$$\operatorname{Gal}_{\operatorname{L}}(T) = \operatorname{Aut}(\mathbb{C})/\operatorname{Autf}_{\operatorname{L}}(\mathbb{C}),$$

where \mathbb{C} is any big saturated model of T.

Corollary 5 The cardinality of $\operatorname{Gal}_{\mathrm{L}}(T)$ is bounded by $2^{|T|}$.

PROOF: The class of f in $\operatorname{Gal}_{\mathcal{L}}(T)$ is determined by the type of f(M) over N. If M and N are chosen to be of cardinality T, there are at most $2^{|T|}$ possible types.

3 Digression: Lascar strong types and thick formulas

Definition Let $\theta(x, y)$ be a formula in two tuples of variables x and y having the same length. $\theta(x, y)$ is thick, if it has no infinite antichain, that is a sequence of tuples a_0, a_1, \ldots such that $\mathbb{C} \models \neg \theta(a_i, a_j)$ for all i < j.

Clearly $\theta(x, y)$ is thick iff there is no indiscernible sequence a_0, a_1, \ldots such that $\mathbb{C} \models \neg \theta(a_0, a_1)$. With this description it is easy to see that the intersection of two thick formulas is thick again and that a formulas remains thick if one interchanges the role of x and y.

Lemma 6 Let $\Theta(x, y)$ be the set of all thick formulas in x and y and let a and b two tuples of the same length. Then the following are equivalent:

a) $\mathbb{C} \models \Theta(a, b)$

b) a and b belong to an infinite indiscernible sequence.

PROOF: Assume $\mathbb{C} \models \Theta(a, b)$. Then, if $\psi(x, y)$ is satisfied by ab, $\neg\psi$ is not thick, so there is an infinite sequence of indiscernibles a_0, a_1, \ldots such that $\psi(a_0, a_1)$ is true. Whence, by compactness, there is one infinite sequence of indiscernibles such that a_0a_1 has the same type as ab.

If conversely a, b are the first two elements of an infinite indiscernible sequence they have to satisfy all thick formulas

Lemma 7

- 1. If $\mathbb{C} \models \Theta(a, b)$, there is a model over which a and b have the same type.
- 2. If a and b have the same type over some model, the pair ab satisfies the relational product $\Theta \circ \Theta$. I.e. there is a tuple a' such that $\mathbb{C} \models \Theta(a, a')$ and $\mathbb{C} \models \Theta(a', b)$.

Proof:

1. Let I be an infinite sequence of indiscernibles and M any small model. Then there are indiscernibles I' over M of the same type as I. Whence there is a model M' of the same type as M over which I is indiscernible. Therefore, if a, bare the first elements of some I, they have the same type over some model M'. Now apply Lemma 6.

A more direct proof, which avoids Lemma 6, uses the observation that two sequences a and b of the same length have the same type over a model iff absatisfies all formulas of the form

$$\exists z \, \varphi(z) \to \exists z \left(\varphi(z) \land \bigwedge_{i=1}^{n} \psi_i(x, z) \leftrightarrow \psi_i(y, z) \right) \tag{1}$$

for all finite variable tuples z and formulas $\varphi(z), \psi_1(x, z), \ldots, \psi_n(x, z)$. All formulas (1) are thick, antichains have length at most 2^n .

2. Assume that a and b have the same type over M. If θ is a thick formula, consider a maximal antichain a_1, \ldots, a_n for θ in M. Then, since M is an elementary substructure, a_1, \ldots, a_n is also a maximal antichain in \mathbb{C} . Whence $\mathbb{C} \models \theta(a_i, a)$ for some i. Since b has the same type over M, we have $\mathbb{C} \models \theta(a_i, b)$. This proves that for every finite subset Θ_0 of Θ there is an a' such that $\mathbb{C} \models \Theta_0(a', a)$ and $\mathbb{C} \models \Theta_0(a', b)$. This proves the claim using compactness and the observation that Θ defines a symmetric relation.

Corollary 8 The relation of having the same Lascar strong type is the transitive closure of the relation defined by Θ .

Let π be a type defined over the empty set. A formula $\theta(x, y)$ is thick on π if θ has no infinite antichain in $\pi(\mathbb{C})$. Let Θ_{π} be the set of all formulas which are thick over π .

Corollary 9 Two realizations of π , a and b, have the same Lascar strong type if the pair (a, b) is in the transitive closure of the relation defined by Θ_{π} .

PROOF: Assume that a and b have the same type over a model M. The proof of Lemma 7 (1) shows that we can assume that M is ω -saturated. If θ is thick on π , let a_1, \ldots, a_n be a maximal antichain for θ in $\pi(M)$. Then, since is ω saturated, a_1, \ldots, a_n is also maximal in $\pi(\mathbb{C})$. Now proceed as in Lemma 7 (2). \Box

4 The topology

Let M and N be two small submodels of \mathbb{C} . Assign to every automorphism f of \mathbb{C} the type of f(M) over N. This defines a surjective map μ from $\operatorname{Aut}(\mathbb{C})$ to $S_M(N)$, the set all types over N of conjugates of M. By Lemma 1 the projection $\operatorname{Aut}(\mathbb{C}) \to \operatorname{Gal}_{\mathrm{L}}(T)$ factors through μ :

$$\operatorname{Aut}(\mathbb{C}) \xrightarrow{\mu} \operatorname{S}_M(N) \xrightarrow{\nu} \operatorname{Gal}_{\operatorname{L}}(T).$$

 $S_M(N)$, as a closed subspace of $S_I(N)$, is a boolean space. We give $Gal_L(T)$ the quotient topology with respect to ν .

To show that this does not depend on the choice of M and N we consider another pair M' and N'. We may assume that $M \subset M'$ and $N \subset N'$. The map $S_{M'}(N') \longrightarrow \text{Gal}_{L}(T)$ then factors as

$$S_{M'}(N') \longrightarrow S_M(N) \xrightarrow{\nu} Gal_L(T),$$

where the first map is restriction of types. Since restriction is continuous and the spaces are compact, $S_M(N)$ carries the quotient topology of $S_{M'}(N')$, which implies that on $\operatorname{Gal}_{L}(T)$ the two topologies, coming from $S_{M'}(N')$ and $S_M(N)$, are the same.

A quotient of a quasicompact space remains quasicompact. So we have

Lemma 10 $\operatorname{Gal}_{\mathrm{L}}(T)$ is quasicompact.

Let p and q be types in $S_M(N)$. Two realizations M' and M'' of p and q have the same Lascar strong type iff $\nu(p) = \nu(q)$. Whence, by Corollary 8, the

$$p \approx q \iff \nu(p) = \nu(q)$$

is the transitive closure of the relation D, where D(p,q) holds if p and q have realizations M' and M'' with $\mathbb{C} \models \Theta(M', M'')$.

Lemma 11

equivalence relation

1. D is a closed subset of $S_M(N) \times S_M(N)$

2. \approx is a F_{σ}-set, i.e. a countable union of closed sets.

Proof:

1. This is clear, because

$$D(p,q) \Leftrightarrow p(x) \cup q(y) \cup \Theta(x,y)$$
 consistent.

2. \approx is the union of all powers

$$\mathbf{D}^n = \underbrace{\mathbf{D} \circ \cdots \circ \mathbf{D}}_{n \text{ times}}.$$

So, is suffices to show that all D^i are closed. This follows from the fact that, in compact spaces, the product of two closed relations is closed again. To see this, note that, for binary relations R and S, $R \circ S$ is the projection of $\{(p,q,r)|R(p,q) \land S(q,r)\}$ onto the first and third variable. \Box

In general the map $S_M(N) \xrightarrow{\nu} Gal_L(T)$ is not open.⁴ But it has a property that comes close to openness. Define for $p \in S_M(N)$

$$\mathbf{D}[p] = \{q \in \mathbf{S}_M(N) \mid \mathbf{D}(p,q)\}$$

Lemma 12 If D[p] is contained in the interior of some subset $O \subset S_M(N)$, then $\nu(p)$ is an inner point of $\nu(O)$.

PROOF: D[p] is the intersection of all

$$D_{\delta}[p] = \{ q \in S_M(N) \mid p(x) \cup q(y) \cup \{\delta(x, y)\} \text{ consistent} \}, \quad (\delta \in \Theta).$$

By compactness some $D_{\delta}[p]$ is contained in (the interior of) O.

<u>Claim 1</u>: p is an inner point of $D_{\delta}[p]$.

Proof: Since δ is thick, there is a finite set $\{H_1, \ldots, H_n\}$ of realizations of p such that for every other realization H we have $\mathbb{C} \models \delta(H_i, H)$ for some i. By compactness this is true for every realization H of any p' contained in a small enough neighborhood C of p, which implies that C is contained in $D_{\delta}[p]$.

After replacing O by $\nu^{-1}(\nu O)$ we can assume that O is closed under \approx (i.e. is a union of \approx -classes.) We set

$$U = \{ q \in S_M(N) \mid D_{\delta}[q] \subset O \text{ for some } \delta \in \Theta \}.$$

⁴If Aut(\mathbb{C}) is endowed with the topology of point–wise convergence, μ becomes continuous (see Lemma 29). If ν were always open, Aut(\mathbb{C}) \rightarrow Gal_L(T) would be open too: If a, b are two (finite) tuples, choose N, M in such a way that $a, b \in M = N$. Then the basic open set { $f \in Aut(\mathbb{C}) | f(a) = b$ } will be mapped onto an open subset of S_M(N) and whence, by assumption, onto an open subset of Gal_L(T). Whence, the closedness of Autf_L(\mathbb{C}) would imply that Gal_L(T) is hausdorff. That this is not true shows one of the examples in [2] ($Th(M^*)$ in Proposition 4.5).

U contains p.

<u>Claim 2</u>: U is closed under \approx .

Proof: Let q be in U, witnessed by $D_{\delta}[q] \subset O$, and $q \approx r$. Then a realization Hof q is mapped by a Lascar strong automorphism f to a realization f(H) = Kof r. In order to show that r belongs to U we fix an element r' of $D_{\delta}[r]$. We have then a realization K' of r' such that $\mathbb{C} \models \delta(K, K')$. Let q' be the type of $H' = f^{-1}(K')$ over M. Since $\mathbb{C} \models \delta(H, H')$, q' belongs to $D_{\delta}[q]$ and therefore to O. Since $q \approx q'$ and O is closed under \approx , we have $q' \in O$. It follows $D_{\delta}[r] \subset O$.

<u>Claim 3</u>: U is open.

Proof: U is a subset of the interior of O by Claim 1. Since U is closed under \approx , it is contained in the open set

$$U' = \{ q \in \mathcal{S}_M(N) \mid \mathcal{D}[q] \subset \operatorname{interior}(O) \},\$$

which, by compactness, equals

$$U'' = \{ q \in \mathcal{S}_M(N) \mid \mathcal{D}_{\delta}[q] \subset \operatorname{interior}(O) \text{ for some } \delta \in \Theta \}.$$

But U'' is contained in U, which shows that U = U'.

By Claims 2 and 3 the projection of U is an open subset of $\nu(O)$ and contains $\nu(p)$. This completes the proof of Lemma.

Corollary 13 If L is countable, $Gal_{L}(T)$ has a countable basis.

PROOF: If L is countable we can choose countable M and N. $S_M(N)$ has then a countable base, \mathcal{B} . We can assume that \mathcal{B} is closed under finite unions. Let us show that the set of all $\nu(B)^\circ$, $(B \in \mathcal{B})$, is a basis of $\operatorname{Gal}_L(T)$. Let Ω be open and $\alpha \in \Omega$. Choose a preimage p of α and a basic open set B, such that $D[p] \subset B \subset \nu^{-1}(\Omega)$. This is possible, since B is compact and \mathcal{B} closed under finite unions. Then $\nu(B)^\circ \subset \Omega$ is an open neighborhood of p.

The following corollary is a reformulation of Corollary 3.5 in [2].

Corollary 14 Let X be a subset of $\operatorname{Gal}_{L}(T)$. Then

$$\overline{X} = \nu(\overline{\nu^{-1}(X)}).$$

PROOF: Since ν is continuous the right hand side lies inside \overline{X} . Let $\nu(p)$ be an element of $\operatorname{Gal}_{\mathrm{L}}(T)$ which does not belong to $\nu(\overline{\nu^{-1}(X)})$. Then the whole \approx -class of p, which contains $\mathrm{D}[p]$, is disjoint from $\overline{\nu^{-1}(X)}$. By Lemma 12 the complement of $\overline{\nu^{-1}(X)}$ is mapped to a neighborhood of $\nu(p)$, which is disjoint from X. This shows $\nu(p) \notin \overline{X}$. **Corollary 15** Gal_L(T) is hausdorff iff \approx is closed.

PROOF: "Gal_L(T) hausdorff $\Rightarrow \approx$ closed" is an easy consequence of the continuity of ν .

Now assume that \approx is closed. Consider two different elements x, y of $\operatorname{Gal}_{\mathrm{L}}(T)$. Since \approx is closed, we can separate each element of $\nu^{-1}(x)$ from each element of $\nu^{-1}(y)$ by a pair of neighborhoods which projects onto disjoint subsets of $\operatorname{Gal}_{\mathrm{L}}(T)$. But $\nu^{-1}(x)$ and $\nu^{-1}(y)$ are compact. This implies that there is one pair of open sets, O and U, which separate $\nu^{-1}(x)$ and $\nu^{-1}(y)$ and have disjoint projections $\nu(O)$ and $\nu(U)$, which are, by the lemma, neighborhoods of x and y.

We will see in section 7 (Theorem 28) that $\operatorname{Gal}_{L}(T)$ need not to be hausdorff.

5 The topological group

Theorem 16 (Lascar) $\operatorname{Gal}_{L}(T)$ is a topological group.

For the proof we fix again two small submodels ${\cal M}$ and ${\cal N}$ and consider the natural mappings

 $\operatorname{Aut}(\mathbb{C}) \xrightarrow{\mu} \operatorname{S}_M(N) \xrightarrow{\nu} \operatorname{Gal}_{\operatorname{L}}(T).$

Lemma 17 The projections of multiplication

$$\mathcal{M} = \left\{ \left(\mu(f), \mu(g), \mu(fg) \right) \mid f, g \in \operatorname{Aut}(\mathbb{C}) \right\}$$

and of inversion

$$\mathcal{I} = \left\{ \left(\mu(f), \mu(f^{-1}) \right) \mid f \in \operatorname{Aut}(\mathbb{C}) \right\}$$

are closed subset of $S_M(N) \times S_M(N) \times S_M(N)$ and of $S_M(N) \times S_M(N)$, respectively.

PROOF: We introduce two unary function symbols F and G and express the fact that F are G automorphisms by the $L \cup \{F, G\}$ -theory A(F, G). Then (p, q, r) belongs to \mathcal{M} iff there are are functions $f, g : \mathbb{C} \to \mathbb{C}$ which satisfy the theory

$$B(F,G,p,q,r) = A(F,G) \cup p(F(M)) \cup q(G(M)) \cup r(F(G(M))).$$

Since \mathbb{C} is saturated, B(F, G, p, q, r) can be satisfied in \mathbb{C} if it is consistent with the theory of $\mathbb{C}_{M,N}$. This is a closed condition on p, q, r.

The closedness of ${\mathcal I}$ is similar.

The graphs of the multiplication and inversion in $\operatorname{Gal}_{L}(T)$ are the projections of \mathcal{M} and \mathcal{I} . If $\operatorname{Gal}_{L}(T)$ is hausdorff, the projections are closed, which, by compactness, implies that multiplication and inversion are continuous in $\operatorname{Gal}_{L}(T)$.

For the general case we need the following notation: For two subsets of A and B of $S_M(N)$ define

$$A * B = \{ r \in S_M(N) \mid (p, q, r) \in \mathcal{M} \text{ for a pair } (p, q) \in A \times B \}.$$

Lemma 18 If A and B are closed and A * B is contained in the open set W, there are neighborhoods U and V of A and B such that $U * V \subset W$.

PROOF: Let W' be the complement of $W.\ A\times B$ is disjoint from the projection C of

$$\mathcal{M} \cap \left(\mathcal{S}_M(N) \times \mathcal{S}_M(N) \times W' \right)$$

on the first two coordinates. Since C is closed (and A and B are compact) there are neighborhoods U and V of A and B such that $U \times V$ is disjoint from C. It follows that $U * V \subset W$.

We can now prove that multiplication in $\operatorname{Gal}_{L}(T)$ is continuous. Let $\alpha = \nu(p)$ and $\beta = \nu(q)$ be elements of $\operatorname{Gal}_{L}(T)$ and Ω an open neighborhood of $\alpha\beta$. Then

 $\mathbf{D}[p] * \mathbf{D}[q] \subset \nu^{-1}(\alpha) * \nu^{-1}(\beta) \subset \nu^{-1}(\alpha\beta) \subset \nu^{-1}(\Omega).$

By the last lemma there neighborhoods U and V of D[p] and D[q], respectively, such that $U * V \subset \nu^{-1}(\Omega)$. This implies $\nu(U)\nu(V) \subset \Omega$. Finally, we remark that, by Lemma 12, $\nu(U)$ and $\nu(V)$ are neighborhoods of α and β .

The continuity of inversion is proved in the same manner, which completes the proof of the theorem.

6 Two subgroups

 $\operatorname{Gal}_{\mathrm{L}}(T)$ has two canonical normal subgroups:

- $\Gamma_1(T)$, the closure of $\{1\}$.
- $\operatorname{Gal}_{\mathrm{L}}^{0}(T)$, the connected component of 1.

Since $\operatorname{Gal}_{L}(T)$ is quasicompact, we have

Lemma 19

- 1. The quotient $\operatorname{Gal}_{\mathrm{L}}^{\mathrm{c}}(T) = \operatorname{Gal}_{\mathrm{L}}(T)/\Gamma_{1}(T)$ is a compact group, the closed Galois group of T.
- 2. $\operatorname{Gal}^0_{\mathrm{L}}(T)$ is the intersection of all closed (normal) subgroups of finite index.

PROOF: $\operatorname{Gal}_{\mathrm{L}}^{\mathrm{c}}(T)$ is quasicompact and hausdorff, i.e. compact. For the second part, note that the quotient $\operatorname{Gal}_{\mathrm{L}}(T)/\operatorname{Gal}_{\mathrm{L}}^{0}(T)$ is totally disconnected ([12, §2]) and compact, whence a profinite group. In a profinite group the intersection of all normal closed subgroups of finite index is the identity.

An *imaginary* element of \mathbb{C} is a class of a \emptyset -definable equivalence relation on a cartesian power \mathbb{C}^n . Automorphisms of \mathbb{C} act in a natural way on imaginaries. An imaginary with only finitely many conjugates under $\operatorname{Aut}(\mathbb{C})$ is called *algebraic*.

Let us prove that algebraic imaginaries are fixed by Lascar strong automorphisms: Let a/E be an algebraic imaginary with k conjugates. This means that E partitions the set of all conjugates of a into k classes. It follows that the type of a contains a formula $\varphi(x)$ whose realization set meets exactly k equivalence classes. Let f fix the model M. Then $\varphi(M)$ meets the same classes as $\varphi(\mathbb{C})$, which implies that a/E contains an element b of M, which must also belong to f(a)/E. It follows that a/E = f(a)/E.

This result extends easily to hyperimaginaries. Hyperimaginaries are equivalence classes of type–definable equivalence relations E, which are defined by a set of formulas Φ without parameters:

$$E(a,b) \Leftrightarrow \mathbb{C} \models \Phi(a,b).$$

a and *b* are, possible infinite, tuples of elements of \mathbb{C} , of length smaller than $|\mathbb{C}|$. A hyperimaginary is *bounded* if it has less than $|\mathbb{C}|$ conjugates.

Lemma 20 Bounded hyperimaginaries are fixed by Lascar strong automorphisms.

PROOF: Let a/E be a bounded hyperimaginary and E defined by $\Phi(x, y)$. Then $\Phi \subset \Theta_{\pi}$, where $\pi = \operatorname{tp}(a)$, since otherwise some $\theta \in \Phi$ would have antichains in $\pi(\mathbb{C})$ of arbitrary length, contradicting the assumption that a/E is bounded. If f is Lascar strong, a and f(a) have the same Lascar strong type. By Corollary 9, E(a, f(a)).

If, conversely, a hyperimaginary h is fixed by all Lascar strong automorphisms, f(h) is determined by the class of f in $\operatorname{Gal}_{\mathrm{L}}(T)$. Whence h has no more than $2^{|T|}$ -many conjugates and is bounded.

We conclude that $\operatorname{Gal}_{\mathcal{L}}(T)$ acts on bounded hyperimaginaries in a well defined way.

Theorem 21

1. $\Gamma_1(T)$ is the set of all elements of $\operatorname{Gal}_L(T)$ which fix all bounded hyperimaginaries. 2. $\operatorname{Gal}_{\mathrm{L}}^{0}(T)$ is the set of all elements of $\operatorname{Gal}_{\mathrm{L}}(T)$ which fix all algebraic imaginaries.

PROOF:

1. Let a/E be a bounded hyperimaginary and $\Gamma \leq \operatorname{Gal}_{L}(T)$ the stabilizer of a/E. The preimage of Γ in $S_{M}(N)$ is

$$\nu^{-1}(\Gamma) = \{ \operatorname{tp}(f(M)/N) \mid f \in \operatorname{Aut}(\mathbb{C}), \ E(f(a), a) \}$$

Choose M containing a, let N = M and E be axiomatized by Φ . Then

$$\nu^{-1}(\Gamma) = \{ p(x) \in \mathcal{S}_M(N) \mid \Phi(x', a) \subset p(x) \},\$$

where the variables x' are a subtuple of x, as a is a subtuple of (m_i) , the enumeration of M. Whence Γ is closed and we conclude $\Gamma_1(T) \subset \Gamma$. This shows that the elements of $\Gamma_1(T)$ fix all bounded imaginaries.

For the converse consider the inverse image G_1 of $\Gamma_1(T)$ in $\operatorname{Aut}(\mathbb{C})$. For |T|-tuples a, b let E(a, b) denote the equivalence relation of being in the same G_1 -orbit. Since the index of G_1 is bounded by $2^{|T|}$, E has at most $2^{|T|}$ classes. Since $\Gamma_1(T)$ is closed, E is type–definable. To see this, write the closed set $\nu^{-1}(\Gamma_1(T))$ as $\{p(x) \in S_M(N) \mid \Psi(x) \subset p(x)\}$ for a set $\Psi(x)$ of L(N)-formulas. Then

$$E(a,b) \Leftrightarrow \text{ for some } f \in \operatorname{Aut}(\mathbb{C}) \ \mathbb{C} \models f(a) = b \land \Psi(f(M)).$$

This shows, by an argument similar to that in the proof of Lemma 17, that E is can be defined by a set of formulas with parameters from M and N. Since $\Gamma_1(T)$ is a normal subgroup, G_1 is a normal subgroup of $\operatorname{Aut}(\mathbb{C})$. This implies that E is invariant under automorphisms, and whence can be defined by a set of formulas without parameters.

Now assume that $\alpha \in \operatorname{Gal}_{L}(T)$ fixes all bounded hyperimaginaries. Take a model K of cardinality |T| and consider it as a |T|-tuple. Then K/E is a bounded hyperimaginary and fixed by α . This means that α is represented by an automorphism which agrees on K with an automorphism f from G_1 . Since K is a model, this implies that α is represented by f and belongs to $\Gamma_1(T)$.

2. Let *i* be an algebraic imaginary and Γ the stabilizer of *i* in $\operatorname{Gal}_{\mathrm{L}}(T)$. Γ is closed and has finite index, since the index equals the number of conjugates of *i*. It follows that $\operatorname{Gal}^{0}_{\mathrm{L}}(T) \subset \Gamma$. Thus the elements of $\operatorname{Gal}^{0}_{\mathrm{L}}(T)$ fix all algebraic imaginaries.

For the converse it suffices to show that every normal closed $\Gamma \leq \operatorname{Gal}_{\mathrm{L}}(T)$ of finite index is the stabilizer of an algebraic imaginary. The first part of the proof shows that Γ , being a normal⁵ closed subgroup, is the stabilizer of a bounded

⁵A slight variation of the argument shows that normality is not necessary: Let G be the preimage of Γ , and K a model of size |T|. Define E(a, b) to be true if a = b or, for some $f \in \operatorname{Aut}(\mathbb{C})$ and $g \in G$, f(K) = a and fg(K) = b. Then K/E is a bounded hyperimaginary with Γ as its stabilizer. See [7, 4.12].

hyperimaginary a/E. Since Γ has finite index, a/E has only a finite number of conjugates. We will show that a/E has the same stabilizer as an algebraic imaginary a/F. (If a is an infinite tuple, we can replace it by the finite subtuple of elements which occur in F.)

Let *E* be defined by Φ and let $a_1/E, \ldots, a_n/E$ be the different conjugates of a/E. By compactness there is a symmetric formula⁶ $\theta \in \Phi$ such that no pair (a_i, a_j) $(i \neq j)$ satisfies $\theta^2 = \theta \circ \theta$.⁷ This means that the sets $\theta(a_i, \mathbb{C})$ are disjoint. Since they cover the set of conjugates of *a*, there is a formula $\varphi(x)$ satisfied by *a* such that the intersections

$$D_i = \varphi(\mathbb{C}) \cap \theta(a_i, \mathbb{C})$$

form a partition of $\varphi(\mathbb{C})$. In order to ensure that this partition is invariant under automorphisms, we choose $\theta \in \Phi$ so small that no pair (a_i, a_j) satisfies θ^4 . This implies that $\theta^2(c, d)$ is never true for $c \in D_i$ and $d \in D_j$ and, therefore, that

$$F(x,y) = (\neg \varphi(x) \land \neg \varphi(y)) \lor (\varphi(x) \land \varphi(y) \land \theta^2(x,y))$$

defines an equivalence relation, with classes $\neg \varphi(\mathbb{C}), D_1, \ldots, D_n$. Thus a/F is an algebraic imaginary. Since a/E and a/F contain the same conjugates of a, they have the same stabilizer. \Box

Corollary 22

- 1. $\operatorname{Gal}_{\mathrm{L}}^{\mathrm{c}}(T)$ is the automorphism group of the set of all bounded hyperimaginaries of length |T|.
- 2. $\operatorname{Gal}_{\mathrm{L}}(T)/\operatorname{Gal}_{\mathrm{L}}^{0}(T)$ is the automorphism group of the set of all algebraic imaginaries.

It was shown in [7] that every bounded hyperimaginary has the same (pointwise) stabilizer as a set of bounded hyperimaginaries of finite length. So $\operatorname{Gal}_{\mathrm{L}}^{\mathrm{c}}(T)$ is the automorphism group of the set of all bounded hyperimaginaries of finite length.

The set of algebraic imaginaries is often called $\operatorname{acl}^{\operatorname{eq}}(\emptyset)$. The group

$$\operatorname{Gal}_{\mathrm{L}}(T)/\operatorname{Gal}_{\mathrm{L}}^{0}(T) = \operatorname{Aut}(\operatorname{acl}^{\mathrm{eq}}(\emptyset))$$

is the Galois group introduced by Poizat in [9].

For stable T two tuples a and b which have the same strong type (i.e. the same type over $\operatorname{acl}^{\operatorname{eq}}(\emptyset)$) have the same type over any model which is independent from ab. It follows that $\operatorname{Gal}_{\mathrm{L}}^{0}(T) = 1$. This was extended to supersimple theories in [1]. Whether this is true for all simple⁸ theories is an open problem. All we know is Kim's result ([5]) that $\Gamma_{1}(T) = 1$ for simple T.

 $^{^{6}\}mathrm{Assume}\ \Phi$ closed under conjunction.

⁷Recall that $\theta(x, y)$ is the formula $\exists z \ \theta(x, z) \land \theta(z, y)$.

⁸See [11] for an introduction to simple theories.

7 Two Examples

The first part of this section is concerned with the proof of the following unpublished result of E. Bouscaren, D. Lascar and A. Pillay:

Theorem 23 Any compact Lie group is the Galois group of a countable complete theory.

First we need a lemma on O-minimal structures. Recall that a structure M with a distinguished linear order < is O-minimal if every definable subset of M is a union of finitely many points and intervals with endpoints in M. Note that every structure elementarily equivalent to an O-minimal structure is itself O-minimal.

Lemma 24 Every automorphism of a big saturated O-minimal structure is Lascar strong.

PROOF: Let \mathbb{C} be a big saturated O-minimal structure. We prove that any two small submodels M, N of the same type have the same type over some model K. This implies, as in the proof of Lemma 1, that every automorphism which maps M to N is the product of an automorphism which fixes M and an automorphism which fixes K.

It is enough (and equivalent, see the proof of Lemma 7 (1)) to show the following : Every consistent formula $\varphi(z)$ has a realization c over which M and N have the same type.

We prove this by induction on the length of z. Assume that z consists of a tuple z_1 and a single variable z_2 . By induction there is a realization c_1 of $\exists z_2 \varphi(z_1, z_2)$ over which M and N have the same type. Let $\psi(m, c_1, z_2)$ be any formula over Mc_1 , and let the tuple $n \in N$ correspond to m. By O-minimality, and since m and n have the same type over c_1 , either both $\psi(m, c_1, \mathbb{C})$ and $\psi(n, c_1, \mathbb{C})$ contain a non-empty final segment of $\varphi(c_1, \mathbb{C})$ or $\neg \psi(m, c_1, \mathbb{C})$ and $\neg \psi(n, c_1, \mathbb{C})$ contain a non-empty segment. If we choose c_2 in the intersection of all these segments, $c = c_1c_2$ realizes $\varphi(z)$ and M and N have the same type over c.

Now fix a compact Lie group G. The group G together with its structure of a real analytic manifold can be defined inside an expansion \mathcal{R} of the field \mathbb{R} by a finite number of analytic functions which are defined on bounded rectangles. By a result of van den Dries \mathcal{R} is O-minimal⁹ (see [10]).

Let \mathcal{R}^* a big saturated extension of \mathcal{R} and G^* the resulting extension of G. The intersection μ of all \emptyset -definable neighborhoods of the unit element of G^* is

⁹As A. Pillay has told me, compact Lie groups are semi–algebraic. This means that here (and in the proof of Corollary 26) one can actually assume that \mathcal{R} is the field of reals with a finite tuple of named parameters.

the normal subgroup of *infinitesimal* elements. The compactness of G implies that every element of G^* differs by an infinitesimal from some element of G. Whence G^* is the semi-direct product of G and μ .

Lemma 25 μ is the set of all commutators $[\varphi, h] = h^{-1}\varphi(h)$, where $h \in G^*$ and $\varphi \in \operatorname{Aut}(\mathcal{R}^*)$.

PROOF: Let φ be an automorphism of \mathcal{R}^* and let h differ from $h_0 \in G$ by an infinitesimal ε . Since φ fixes \mathbb{R} , it fixes h_0 . Whence $h^{-1}\varphi(h) = (h_0\varepsilon)^{-1}\varphi(h_0\varepsilon) = \varepsilon^{-1}\varphi(\varepsilon)$ is infinitesimal.

Let conversely $\varepsilon \in \mu$ be given. Consider a generic type $p \in \mathcal{S}(\emptyset)$ of G (cf. [8]). This means that p can be axiomatized by formulas which define (non-empty) open subsets O(G) of G. Each $O(G^*)$ contains two elements h and $h\varepsilon$ (pick any $h \in O(G)$). Whence, by saturation, p has two realizations h and $h\varepsilon$. Choose an automorphism φ with $\varphi(h) = h\varepsilon$. Then $\varepsilon = h^{-1}\varphi(h)$.¹⁰

Consider the two-sorted structure

$$\mathcal{M} = (\mathcal{R}, X, \cdot)$$

where \cdot is a regular action of G on the set X. We will show that G is the Galois group of the complete theory of \mathcal{M} .

Let $\mathcal{M}^* = (\mathcal{R}^*, X^*)$ be a big saturated elementary extension of \mathcal{M} . To describe the automorphisms of \mathcal{M}^* we fix a base point $x_0 \in X^*$. Any element of X^* can then uniquely be written as

$$x = h \cdot x_0$$

for some $h \in G^*$. We extend each automorphism φ of \mathcal{R}^* to \mathcal{M}^* by

$$\overline{\varphi}(x) = \varphi(h) \cdot x_0.$$

The automorphisms which leave \mathcal{R}^* fixed have the form \overline{g} , where

$$\overline{g}(x) = hg^{-1} \cdot x_0$$

This implies that every automorphism of \mathcal{M}^* is a product

$$\Phi = \overline{g}\,\overline{\varphi}.$$

Note the commutation rule $\overline{\varphi} \,\overline{g} = \overline{\varphi(g)} \,\overline{\varphi}$.

Elementary substructures of \mathcal{M}^* have the form $(\mathcal{R}', G' \cdot x)$, where \mathcal{R}' is an elementary substructure of \mathcal{R}^* and $x = h \cdot x_0$ is any element of X^* . Therefore an automorphism fixes a submodel iff it can be written as $\overline{h}^{-1}\overline{\varphi}\overline{h}$, for some φ

 $^{^{10}\}mathrm{A}$ variant of the proof shows that one can find a φ which fixes an elementary submodel of $\mathcal{R}^*.$

which fixes an elementary submodel of \mathcal{R}^* . It follows that an automorphism is Lascar strong iff it is a product of conjugates of automorphisms of the form $\overline{\varphi}$, for Lascar strong φ .

By Lemma 24 all φ are Lascar strong. The formula

$$\overline{h}^{-1}\overline{\varphi}\,\overline{h} = \overline{[\varphi,h]}\,\overline{\varphi},$$

together with the last Lemma, implies that $\Phi = \overline{g} \,\overline{\varphi}$ is Lascar strong iff g is infinitesimal. We conclude that

$$g \mapsto \text{class of } \overline{g}$$

defines an isomorphism $\iota: G \to \operatorname{Gal}_{\mathrm{L}}(\mathcal{M}^*).^{11}$

Finally we have to prove that ι is a homeomorphism. Let U(G) be a \emptyset definable neighborhood of $1 \in G$. Consider the map $\nu : S_{\mathcal{M}}(\mathcal{M}) \to \operatorname{Gal}_{L}(\mathcal{M}^{*})$. Then $\nu^{-1}\iota(U(G))$ consists of those $\operatorname{tp}(f(\mathcal{M})/\mathcal{M})$ for which $\mathcal{M}^{*} \models U(f(1))$. Whence, if 1 has index 1 in the enumeration of \mathcal{M} ,

$$\nu^{-1}\iota(U(G)) = \{ p \in \mathcal{S}_{\mathcal{M}}(\mathcal{M}) \mid U(x_1) \in p \}.$$

This proves that $\iota(U_n)$ is open. So ι is an open map. Since $\operatorname{Gal}_{L}(\mathcal{M}^*)$ is quasicompact and G is hausdorff, ε must also be continuous. This completes the proof of Theorem 23.

Corollary 26 Every compact group is the Galois group of a complete theory.

PROOF: Let G be a compact group. G is the direct limit of a directed system $(G_i, f_{i,j})_{i \leq j \in I}$ of compact Lie groups ([12, §25]). Again let \mathcal{R} be an expansion of the reals by bounded analytic functions, in which all the G_i and the maps f_{ij} can be defined. The elements of G are then given by certain infinite tuples $g = (g_i)_{i \in I}$ from the direct product of the G_i .

 ${\cal G}$ will be the Galois group (of the complete theory) of the many–sorted structure

$$\mathcal{M} = (\mathcal{R}, X_i, f'_{ij})_{i \le j \in I},$$

where the directed system of sets $(X_i, f'_{i,j})_{i \leq j \in I}$ is a copy of $(G_i, f_{i,j})_{i \leq j \in I}$ and each G_i operates (regularly) on X_i as it operates on itself by left multiplication.

Let again \mathcal{M}^* be a big saturated elementary extension of \mathcal{M} and G^* the inverse limit of the G_i^* . We call an element $\varepsilon = (\varepsilon_i)$ of G^* infinitesimal if all its components are infinitesimal. Let μ the subgroup of all infinitesimals. It is easy to see that G is isomorphic to the quotient G^*/μ .

Fix a base point $x_0 = (x_{0i})_{i \in I}$ in the (non-empty) inverse limit of the X_i^* . Then every automorphism of \mathcal{M}^* has the form $\Phi = \overline{g} \overline{\varphi}$ for $\varphi \in \operatorname{Aut}(\mathcal{R}^*)$ and

¹¹The proof shows that two elements of X^* differ by an infinitesimal if they have the same Lascar strong type. It is easy to verify that this happens iff they have the same type over a submodel of \mathcal{M}^* .

 $g \in G^*$, where \overline{g} and $\overline{\varphi}$ are defined as in the proof of the theorem. Thus, it suffices to show that Φ is Lascar strong iff g is infinitesimal.

Assume first that Φ is Lascar strong. Then each g_i is infinitesimal, since Φ restricted to (\mathcal{R}^*, X_i) is Lascar strong. Conversely, if g is infinitesimal, we find for every i an $h_i \in G_i$ such that h_i and $h_i g_i$ have the same type. A compactness argument shows that we can find the sequence (h_i) in G^* . Then h and hg have the same type. Let ψ be an automorphism of \mathcal{R}^* with $\psi(h) = hg$. As in the proof of the theorem, it is easy to see that $\overline{g}\overline{\psi} = \overline{h}^{-1}\overline{\psi}\overline{h}$ is Lascar strong. Whence also $\Phi = (\overline{h}^{-1}\overline{\psi}\overline{h})\psi^{-1}\overline{\varphi}$ is Lascar strong. \Box

We construct our second example from the circle group S, the unit circle in the complex number plane. Let us fix some notation: λ_s denotes multiplication by s. R is the cyclic ordering on S, where R(r, s, t) holds if s comes before t in the counter-clockwise ordering of S $\setminus \{r\}$.

Fix a natural number N, write σ_N for $\lambda_{\frac{2\pi i}{N}}$ and consider the structure

$$\mathcal{S}_N = (\mathbf{S}, R, \sigma_N).$$

Let \mathbb{C}_N a big saturated elementary extension and f an automorphism of \mathbb{C}_N . If f is Lascar strong, let |f| be the smallest n such that f is the product of n automorphisms which fix elementary submodels. If f is not Lascar strong, write $|f| = \infty$.

We will make use of the following lemma, which can be proved from Lemma 24 (see [2] for details).

Lemma 27

- 1. Every automorphism of \mathbb{C}_N is the product of some σ_N^n and some f with $|f| \leq 2$.
- 2. $|\sigma_N^n| = |n| + 2$, whenever $0 < |n| \le \frac{N}{2}$.

Let S_{∞} be the disjoint union of the S_1, S_2, \ldots viewed as a many-sorted structure¹² with saturated extension $\mathbb{C}_{\infty} = (\mathbb{C}_1, \mathbb{C}_2, \ldots)$.

Theorem 28 ([2]) For each N let C_N be the N-element cyclic group with generator c_N . Let B be the group of all sequences $(c_N^{e_N})$ with a bounded sequence (e_N) of exponents. Then

$$\operatorname{Gal}_{\operatorname{L}}(\mathbb{C}_{\infty}) \cong \prod_{N} \operatorname{C}_{N}/B.$$

 $\operatorname{Gal}_{\operatorname{L}}(\mathbb{C}_{\infty})$ carries the indiscrete topology.

 $^{^{12}}$ We take also the disjoint union of the languages.

PROOF: The map $(\mathbf{c}_N^{e_N}) \mapsto (\sigma_N^{e_N})$ defines a map from $\prod_N \mathbf{C}_N$ to $\operatorname{Aut}(\mathbb{C}_\infty)$, which yields a homomorphism

$$\mu: \prod_N \mathcal{C}_N \to \mathrm{Gal}_{\mathcal{L}}(\mathbb{C}_\infty).$$

Let (f_N) be any automorphism of \mathbb{C}_{∞} . If we apply part 1 of the Lemma to each component we see that we can write (f_N) as a product of some $(\sigma_N^{e_N})$ and two automorphisms which fix a model. This shows that μ is surjective.

Let $(c_N^{e_N})$ be an arbitrary element of $\prod_N C_N$. We can assume that $|e_N| \leq \frac{N}{2}$. Then by part 2 of the lemma it is immediate that $(\sigma_N^{e_N})$ is Lascar strong iff (e_N) is bounded, which means that B is the kernel of μ .

It remains to show that the topology of $\operatorname{Gal}_{L}(\mathbb{C}_{\infty})$ is indiscrete, or

$$\operatorname{Gal}_{\mathrm{L}}(\mathbb{C}_{\infty}) = \Gamma_1(\mathbb{C}_{\infty}).$$

The preimage of $\Gamma_1(\mathbb{C}_{\infty})$ in $\operatorname{Aut}(\mathbb{C}_{\infty})$ is, by the next Lemma, a closed subgroup, which contains $\operatorname{Autf}_{L}(\mathbb{C}_{\infty})$. The automorphisms which fix almost every \mathbb{C}_N are Lascar strong and form a dense subset of $\operatorname{Aut}(\mathbb{C}_{\infty})$. Thus the preimage of $\Gamma_1(\mathbb{C}_{\infty})$ is the whole $\operatorname{Aut}(\mathbb{C})$ group. \Box

We conclude with a general lemma. Let M be a model of T and consider the topology of *point-wise convergence* on Aut(M), with basic open sets

$$U_{a,b} = \{ f \mid f(a) = b \}$$

where a, b are finite tuples from M.

Lemma 29 The natural map $\operatorname{Aut}(M) \to \operatorname{Gal}_{\operatorname{L}}(T)$ is continuous.

PROOF: Let Ω be a neighborhood of the image of f in $\operatorname{Gal}_{\mathrm{L}}(T)$. The preimage of Ω under¹³ $\nu : S_M(N) \to \operatorname{Gal}_{\mathrm{L}}(T)$ contains a basic neighborhood

$$O = \{ p \mid \varphi(x) \in p \}$$

of $\operatorname{tp}(f(M)/N)$. Let a be the tuple of elements of M which are enumerated by the free variables of φ . Then

$$O = \{ \operatorname{tp}(g(M)/N) \mid \mathbb{C} \models \varphi(g(a)) \} \subset \{ \operatorname{tp}(g(M)/N) \mid g(a) = f(a) \}.$$

Whence $U_{a,f(a)}$ is a neighborhood of f which is mapped into Ω .

 $^{^{13}}N$ can be any small model.

References

- Steve Buechler, Anand Pillay, and Frank O. Wagner. Supersimple theories. J. Amer. Math. Soc., 14:109–124, 2001.
- [2] E. Casanovas, D. Lascar, A. Pillay, and M. Ziegler. Galois groups of first order theories. 19 pages, submitted, 2000.
- [3] Wilfried Hodges. *Model Theory*. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1993.
- [4] Ehud Hrushovski. Simplicity and the lascar group. Preprint, 1997.
- [5] Byunghan Kim. A note on lascar strong types in simple theories. J. Symbolic Logic, 63:926–936, 1998.
- [6] Daniel Lascar. The category of models of a complete theory. J. Symbolic Logic, 47:249–266, 1982.
- [7] Daniel Lascar and Anand Pillay. Hyperimaginaries and automorphism groups. J. Symbolic Logic, 66(1):127–143, 2001.
- [8] Anand Pillay. On groups and fields definable in o-minimal structures. J. Pure Appl. Algebra, 53:239–255, 1988.
- [9] Bruno Poizat. Une théorie de galois imaginaire. J. Symbolic Logic, 48(4):1151–1170, December 1983.
- [10] Lou van den Dries. A generalization of the Tarski-Seidenberg Theorem and some non-definability results. Bull. Amer. Math. Soc. (N.S.), 15(2):189– 193, October 1986.
- [11] Frank O. Wagner. *Simple Theories*, volume 503 of *Mathematics and Its Applications*. Kluwer Academic Publishers, Dordrecht, NL, 2000.
- [12] André Weil. L'integration dans les groupes topologiques. Actualités scientifiques et industrielles. Hermann, Paris, 2. edition, 1951.