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Abstract

This article aims to classify those reducts of expansions of (Q, <) by unary predicates which

eliminate quantifiers, and in particular to show that, up to interdefinability, there are only

finitely many for a given language. Equivalently, we wish to classify the closed subgroups of

Sym(Q) containing the group of all automorphisms of (Q, <) fixing setwise certain subsets.

This goal is achieved for expansions by convex predicates, yielding expansions by constants

as a special case, and for the expansion by a dense, co-dense predicate. Partial results are

obtained in the general setting of several dense predicates.

1 Introduction

In this article, we study expansions of (Q, <) by unary predicates that have quantifier elimi-
nation. Our goal is to classify the reducts and to show that, up to interdefinability, there are
only finitely many such. Here, a reduct for us is a structure with domain Q in some relational
language each of whose basic relations are ∅-definable in the original structure. We will consider
two interdefinable reducts as the same structure. E.g. Q with the circular ordering coming from
< is a reduct of (Q, <), and considered to be the same reduct as Q with the reverse circular
ordering.

All structures under consideration here are ℵ0-categorical, and so we can identify a structure
with its automorphism group, viewed as a permutation group on Q. A reduct then corresponds
to a closed subgroup of the full symmetric group on Q containing the automorphism group of the
original structure. Having finitely many reducts thus is implies that there are only finitely many
closed subgroups of the symmetric group on Q containing the corresponding automorphism
group.

First we give a proof classifying the well-known reducts of (Q, <), which we believe to be
simpler than the existing ones. Then we show that there are only finitely many reducts of the
expanded structure by an explicit classification in the following two cases: Expansions of (Q, <)
by convex subsets (which include the case of expansion by constants), and expansions by a
dense and co-dense predicate. We have partial results for several dense predicates, and indicate
how the general case of an expansion of (Q, <) by unary predicates that eliminates quantifiers
reduces to the case of dense predicates. Our results support Simon Thomas’ conjecture (shown
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in [T1] to hold for the random graph and for the homogeneous universal Km-free graphs, and
in [T2] for random k-graphs):

Conjecture If M is a structure with quantifier elimination in a finite relational language, then
M has, up to interdefinability, only finitely many reducts.

The condition is necessary: [AZ] describes infinitely many reducts of a doubled infinite-dimensio-
nal projective space over F2. That structure is totally categorical and axiomatisable in a finite
relational language, but does not have quantifier elimination in a finite relational language.

In [T1], there is an example due to Cherlin and Lachlan of a structure having quantifier elimi-
nation in a finite relational language and a reduct of this structure that does not have quantifier
elimination in a finite relational language. This is never the case in our situation.

In this context, the following questions seem to be open:

Question 1 Are the following properties invariant under bi-interpretability?

• to have quantifier elimination in a finite relational language

• to have finitely many reducts

Question 2 Do non-ℵ0-categorical theories always have infinitely many reducts?

We would like to thank the referees for their helpful comments.

1.1 Notations, conventions, and some explanations

We will switch freely between the model theoretic and the group theoretic aspects. Most of the
model theory used in this paper can be looked up in a standard textbook, e.g. [Ho] or [P2].
Following a suggestion of one of the referees, we have provided group theoretic translations of
some model theoretic statements, so that at least the propositions and theorems should become
understandable for non model theorists. All structures in this paper will be ℵ0-categorical, i.e.
have an oligomorphic automorphism group. Some of the definitions are only possible, and some
of the group theoretic translations are only valid in this context.

We always consider structures up to interdefinability (also called “definitional equivalence” in
[Ho]), which allows us to identify an ℵ0-categorical structure with its automorphism group.
Hence we identify two reducts R1, R2 of a structure M if they have the same ∅-definable sets,
or, equivalently, if Aut(R1) = Aut(R2). Different reducts may still be isomorphic as structures.
This happens when the automorphism groups are isomorphic as permutation groups on M ,
which is the same as to say that they are conjugate in the symmetric group on M . In this case, we
call R1 and R2 equivalent up to isomorphism. If R is a reduct of M, we call |Aut(R) : Aut(M)|
the index of R in M.

An equivalence relation is called finite if it has finitely many classes. If M is ℵ0-categorical,
we let EM be the finest ∅-definable finite equivalence relation on M , i.e. the finest Aut(M)-
invariant equivalence relation with finitely many classes. This is the relation “having the same
strong type over ∅”, or “having the same type over acleq(∅)”. We denote by MC the expansion
of M by predicates for the EM-classes.

(In our context, “∅-definable” means the same as “invariant under Aut(M)”, and the elements
of acleq(∅) are equivalence classes of finite Aut(M)-invariant equivalence relations on some Mn,
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where Aut(M) acts naturally on Mn. Invariance of a set or a relation is always meant as setwise
invariance, unless otherwise specified. A (complete) type over a set corresponds to an orbit of
the pointwise stabilizer of that set in the automorphism group.)

Sym(X) denotes the symmetric group on a set X, Sym(n) or Sn the symmetric group on
{1, . . . , n}, An the alternating group. For a finite permutation group, we often write its order
as a superscript and the number of elements it acts on as a subscript. If x̄ = (x1, . . . , xn) ∈ Xn

and σ ∈ Sn, then x̄σ stands for (xσ(1), . . . , xσ(n)).

A type or a formula p(x1, . . . , xn) will be called strict if p ` ∧
i 6=j xi 6= xj . A tuple is strict if

its type is strict. Partitions are usually meant to be given by subsets or predicates, not by an
equivalence relation. If P is a subset of the domain of a structure and R an n-ary relation, then
RP denotes the restriction of R to Pn, and ¬P the complement of P .

1.2 The setting: expansions of (Q, <) with quantifier elimination

An expansion of (Q, <) by finitely many unary predicates is quantifier-free interdefinable with
an expansion by unary predicates partitioning Q: Replace the predicates by the atoms of the
generated boolean algebra. Then the first structure eliminates quantifiers if and only if the
second does.

If, for example, we add to (Q, <) a predicate for [0, +∞), then the point 0 becomes definable
as the minimum of the new predicate, but it is not quantifier-free definable.

Lemma 1.1 Let Q be partitioned by unary predicates P1, . . . , Pn. Then (Q, <, P1, . . . , Pn) has
quantifier elimination if and only if each Pi is either a singleton or infinite without maximum
and minimum, and for all i, j, either Pi < Pj, or Pj < Pi, or Pi and Pj are dense in each
other. Moreover, the structure is determined up to isomorphism by these data.

Proof: Suppose the structure eliminates quantifiers. A maximum or a minimum of Pi is defin-
able, but not quantifier-free if Pi is not a singleton. If neither Pi < Pj nor Pj < Pi, then we get
x1 < y < x2 with x1, x2 ∈ Pi and y ∈ Pj (or vice versa). If follows that Pi is infinite, and that
Pj is dense in Pi because all ordered pairs in Pi have the same quantifier-free type, hence the
same type as (x1, x2). But then we also get the symmetric situation with i and j interchanged.

Conversely, with the usual back and forth techniques it is easy to construct an automorphism
of the structure between two tuples having the same quantifier-free type, or to construct an
isomorphism between two structures with the same data. ¤

Note that there are ℵ0-categorical expansions of (Q, <) by unary predicates that do not eliminate
quantifiers.

The rest of the paper is organised as follows: In Section 2 we treat the case n = 0 of (Q, <)
without predicates, and in Section 3 two other very special cases: expansions of Q by predicates
without ordering, and reducts of the general case but with a unique strong 1-type. In Section 4,
we study definable orderings in expansion of (Q, <) by unary predicates which eliminate quan-
tifiers. These preparations allow us to give an explicit classification of all reducts of expansions
by convex sets in Section 5. In Section 6, we consider the case of dense predicates, where a com-
plete proof of Thomas’ conjecture is obtained for the case n = 2. Finally, Section 7 indicates
how the general case follows from the dense case.
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2 Reducts of the dense linear order (Q, <)

First we introduce the three non trivial relations definable from a dense linear order, and
convenient notation for some of them.

• The unoriented linear order or betweenness relation “betw”:

betw(x, y, z) :⇐⇒ y ∈ conv(x, z) ⇐⇒ (x < y < z) ∨ (z < y < x)

where “conv” stands for the convex hull.

• The cyclic order “cyc”:

cyc(x, y, z) ⇐⇒ −−→xyz :⇐⇒ (x < y < z) ∨ (y < z < x) ∨ (z < x < y)

• The unoriented cyclic order or separation relation “sep”:

sep(w, x, y, z) ⇐⇒ ←−−→wxyz :⇐⇒ −−−→wxyz ∨ −−−→zyxw

• We extend our notation for the cyclic orders by defining

−−−−−→x1 . . . xn :⇐⇒
∧

16i<j<k6n

−−−−→xixjxk and ←−−−−→x1 . . . xn :⇐⇒
∧

16i<j<k<l6n

←−−−−→xixjxkxl

Note that there are always two interdefinable linear and two interdefinable cyclic orderings:
an ordering and its reversed ordering; whereas no other betweenness or separation relation is
∅-definable from a dense linear order.

In the rest of this section, we present a proof of the following theorem:

Theorem 2.1 Up to interdefinability, there are exactly five reducts of (Q, <), namely:

1. the dense linear order (Q, <) itself;

2. the betweenness relation coming from <;

3. the dense cyclic order coming from <;

4. the separation relation coming from <;

5. and the infinite set Q without structure.

This follows immediately from a theorem of Cameron classifying the highly homogeneous per-
mutation groups on a countable set, see [C2] theorem 3.10. That result was first proved using
group-theoretic methods in [C1]. A model theoretic approach is given in [HLS]). On of the ref-
erees pointed out that the theorem was first proved by Frasnay in [F]. We reprove Theorem 2.1
here by another method. We subsequently learned of the approach of Higman in [Hi], which is
very similar to ours. We are able here to combine this approach with some basic model theory
to provide an alternate proof of Cameron’s theorem.
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2.1 The method

Let R be a reduct of (Q, <). It is determined by the groups

GR
n :=

{
σ ∈ Sn

∣∣ (x1, . . . , xn) ≡ (xσ(1), . . . , xσ(n)) in R

for some (equivalently each) x1 < x2 < · · · < xn

}
,

because they determine the orbits of strict n-tuples. We call (GR
n )n∈N the structure sequence

of R. When is a sequence of groups a structure sequence? We need some terminology: For
i ∈ {1, . . . , n + 1}, let

• βi : {1, . . . , n} → {1, . . . , i− 1, i + 1, . . . , n + 1} be the order preserving bijection,

• πi : Sn+1 → Sn be the map σ 7→ β−1
σ(i) ◦ σ ◦ βi.

We say that Gn extends to Gn+1, and write Gn @ Gn+1, if πi[Gn+1] = Gn for all i.

Lemma 2.2 A sequence (Gn)n∈N with Gn 6 Sn is a structure sequence iff Gn extends to Gn+1

for all n.

Proof: “⇒” is clear: choose a tuple x1 < · · · < xn+1 and consider all extracted n-tuples.
“⇐”: the automorphism group of the (ℵ0-categorical) structure is given by all bijections acting
like an element of Gn on ordered n-tuples, and the condition ensures that this automorphism
group acts exactly like Gn. ¤

Remark 2.3 (a) Since πσ(i)(τ) ◦ πi(σ) = πi(τσ), we have
n+1⋂
i=1

πi[Gn+1] 6 Sn.

It follows that Gn+1 extends some group Gn 6 Sn iff all πi[Gn+1] are equal.

(b) If Gn @ Gn+1, then |Gn+1| > |Gn|.

(c) If Gn @ Gn+1 and |Gn+1| = |Gn|, then all maps πi must be bijective.

2.2 The proof

We start to determine all possible structure sequences. We need the following subgroups of Sn:

• the identity group In;

• the cyclic “swap group” of order 2 Z2
n :=

〈 (
1 n

)(
2 (n− 1)

) · · · ([n
2 ] [n+3

2 ]
) 〉

• the cyclic “cycle group” of order n Zn
n :=

〈
(1 2 . . . n)

〉
;

• and the dihedral “square group” D2n
n := Z2

n n Zn
n .

2.2.1 The different orders

Lemma 2.4 (a) (In) is the structure sequence of the dense order, and obviously In+1 is the
only possible extension of In if n > 2.

(b) (Z2
n) is the structure sequence of the betweenness relation, and it is the only possible structure

sequence containing Z2
3 .
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(c) (Zn
n ) is the structure sequence of the cyclic order, and it is the only possible structure

sequence containing Z3
3 .

(d) (D2n
n ) is the structure sequence of the separation relation, and it is the only possible structure

sequence containing D8
4.

Proof: In each case, it is rather obvious that the sequences are the structure sequences of the
given relations. For example, in case (d) it is clear that D2n

n conserves the separation relation,
hence that it is a subgroup of the nth structure group. D2n

n acts transitively, thus it is sufficient
to show that the one-point stabilizers of the structure group equals those of D2n

n , which are the
“swap group around that point”. But after fixing one point, the betweenness relation, whose
structure group is the swap group, is definable from the separation relation.

(a) is clear anyway. For (b), if a structure sequence (Gn) contains Z2
3 , it has to preserve the

betweenness relation, hence Gn 6 Z2
n. By induction, Gn has to have at least 2 elements, whence

Gn = Z2
n.

Analogously for (c) and (d): if (Gn) contains Z3
3 or D8

4, we get (Gn) 6 Zn
n and (Gn) 6 D2n

n

and by induction |Gn| > n− 1 and |Gn| > 2n− 2 respectively, whence equality. ¤

2.2.2 The full symmetric group

Clearly, (Sn) is the structure sequence of the infinite set.

Lemma 2.5 πi : Gn+1 → Sn is not injective for some i iff Gn+1 contains a cycle ζ of consec-
utive elements.

Proof: If πi(σ) = πi(τ) and σ 6= τ , then σ(i) 6= τ(i). Suppose σ(i) < τ(i). Then σ ◦ τ−1

=
(
σ(i) (σ(i) + 1) . . . τ(i)

)
is the desired cycle. Conversely, suppose ζ =

(
c (c + 1) . . . d

) ∈ Gn+1

and let σ = ζ ◦ τ for arbitrary τ . Then πi(σ) = πi(τ) for i = σ−1(c). ¤

Lemma 2.6 (a) S2 only extends to Z2
3 , Z3

3 or S3.

(b) S3 only extends to A4, S4 or one of the three dihedral Sylow-2-subgroups of S4.

(c) If n > 4, then Sn only extends to An+1 or Sn+1.

Proof: (a) S3 has five subgroups with at least two elements. By Remark 2.3 (c) and Lemma 2.5,
S2 does not extend to two of the one-point stabilizers.

(b),(c) If Sn @ Gn+1, then Gn+1 has at least n! elements, hence index m 6 n + 1 in Sn+1. The
action of Sn+1 on the cosets of Gn+1 provides a homomorphism Sn+1 → Sm whose image has at
least m elements. If n > 4, then An+1 is simple. Hence either m = 1 and Gn+1 = Sn+1, or m = 2
and Gn+1 = An+1, or m = n + 1, and then the homomorphism above is an isomorphism and
Gn+1 the one-point stabilizer of itself, hence Gn+1

∼= Sn. If n = 3, the only further subgroups
of S4 of index at most 4 are the three Sylow-2-subgroups of index 3. This proves (b).

If Gn+1
∼= Sn, Gn+1 is a one-point stabilizer, except for n = 5, since S6 has non-trivial outer

automorphisms and therefore six “exotic” subgroups Sex1
6 , . . . , Sex6

6 isomorphic to S5 (given by
the action of S5 on its six Sylow-5-subgroups). By Remark 2.3 (c) and Lemma 2.5, the one-point
stabilizers are excluded. Inspection of the exotic groups shows, in some numbering, (123456) ∈
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Sex1
6 ; (2345) ∈ Sex2

6 ; (1234), (3456) ∈ Sex3
6 ; (1234), (23456) ∈ Sex4

6 ; (12345), (3456) ∈ Sex5
6 ;

(2345) ∈ Sex6
6 . (This can also be deduced somewhat lengthily from the way the non-trivial

outer automorphisms act on the conjugation classes of S6). Hence Sexi
6 does not extend S5 by

Lemma 2.5.

This proves the “only”-parts of the lemma. One can check without difficulties that the groups
really extend to the given ones, but this is not necessary for the proof of the theorem. ¤

2.2.3 The remaining cases

Finally we show that the remaining cases — two dihedral groups and the alternating groups —
can’t occur.

Lemma 2.7 D′
4 = 〈(12), (1324)〉 does not extend S3.

Proof: It is straightforward to check that π4[D′
4] = {id3, (12), (13), (123)} 6= S3. ¤

Lemma 2.8 D′′
4 = 〈(14), (1243)〉 does not extend to any group.

Proof: The 4-ary relation R(a, b, c, d) induced by D′′
4 is the following: “the unoriented intervals

(a, d) and (b, c) lie one in the other”. Given five elements a < b < c < d < e, R allows to
identify a and e up to “swap” as the two elements such that |= R(a, x, y, e) for each choice
x, y ∈ {b, c, d}. Then d is determined from a by R(a, x, y, d) with x, y 6= e, analogously b from
e. Thus all the elements are identifiable up to swap, the betweenness relation is definable from
R and the structure sequence of (Q, R) must be (Z2

n). ¤

Lemma 2.9 An has no extension if n > 4.

Proof: Consider all σ ∈ Sn+1 such that π5(σ) = (123). We show that some πi(σ) is odd.
Note that σ is determined by σ(5). 1st case: σ(5) > 3. Then π3(σ) has the same parity as σ

and π1(σ) has a different parity, whence one is odd. 2nd case: σ(5) = 2. Then σ = (1452) and
π3(σ) = (1342) is odd. 3rd case: σ(5) = 1. Then σ = (145) and π2(σ) = (1234) is odd. ¤

This proves the theorem. The information might be put together in a final picture as follows:

I1 @ I2 @ I3 @ I4 @ I5 @ I6 @ . . . linear order
S2 @ Z2

3 @ Z2
4 @ Z2

5 @ Z2
6 @ . . . betweenness

Z3
3 @ Z4

4 @ Z5
5 @ Z6

6 @ . . . cyclic order
S3 6@ D′

4

@ D8
4 @ D10

5 @ D12
6 @ . . . separation

D′′
4 6@

A4 6@
S4 @ A5 6@

S5 6@ exotic S5

@ A6 6@
S6 @ . . . infinite set
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2.3 Additional remarks

The proof of Theorem 2.1 also shows that the dense linear order, cyclic order, betweenness and
separation relations eliminate quantifiers in their natural languages, since in each case, if n is
the arity of the relation, the nth group in the structure sequence already determines the whole
sequence.

2.3.1 The lattice

The reducts of a given structure M form a complete lattice. The infimum of a family (Ri)i∈I

is the structure whose basic relations are those which are ∅-definable in all structures Ri; the
supremum is the structure generated by the ∅-definable sets of all structures.

Let the normalised structure M′ be the structure with domain M and 2n-ary basic relations
tpM(x̄) = tpM(ȳ) for each n. Note that M′′ can be different from M′. If M is ℵ0-categorical,
then M′ is a reduct of M, and if M eliminates quantifiers in a finite relational language,
then M′ has finite index in M. The group Perm(M) of permorphisms of M consists of the
permutations of M inducing a bijection on the definable sets. If M is ℵ0-categorical, then
Aut(M′) = Perm(M) = NSym(M)(Aut(M)).

The lattice of reducts of an ℵ0-categorical structure carries the indices and the normaliser
function R 7→ R′ as additional information. A general problem would be to classify all (finite)
lattices with indices and normaliser function occurring as lattices of reducts of ℵ0-categorical
structures. Since Sym(ℵ0) has no proper closed subgroups of finite index, the index over the
smallest element (M, ∅) is always ∞.

The lattice for (Q, <) looks as follows:

(Q, <)
∞ / \ 2

(Q, cyc) (Q, betw) = (Q,betw)′ = (Q, <)′

2 \ / ∞
(Q, sep)= (Q, sep)′ = (Q, cyc)′

| ∞
(Q, ∅)

The numbers are the indices. Aut(Q,betw) ∼= Aut(Q, <)oZ2 and Aut(Q, sep) ∼= Aut(Q, cyc)o
Z2, where in both cases Z2 is generated by any of the order-reversing automorphisms of order
2. With other words, the relations < and cyc are exchanged with their complements on strict
tuples. Aut(Q, cyc) is generated by Aut(Q, <) and bijections βc moving irrational cuts c to
the cut “at infinity”. That is, βc is composed of order-preserving bijections (c, +∞)→ (−∞, c)
and (−∞, c) → (c, +∞), and reverses the ordering between the two parts. Aut(Q, <) acts
transitively, Aut(Q, betw) and Aut(Q, cyc) act 2-transitively, and Aut(Q, sep) 3-transitively on
Q.

The random graph has exactly the same lattice as (Q, <), see [T1], as does the random tourna-
ment, see [B]. There is a surprising analogy between the reducts: the index 2 steps correspond
to semi-direct products with an anti-isomorphism (exchanging edges and non-edges on strict
pairs); the switching group corresponding to Aut(Q, cyc) is generated by bijections βY which are
isomorphisms on a subset Y of vertices and on its complement, and anti-isomorphisms between
Y and its complement. In particular, the groups act as transitively as do their counterparts.

8



2.3.2 Imaginaries

We consider the following two equivalence relations, definable in (Q, <). To simplify the termi-
nology, we assume that they are only defined on strict tuples.

• The “equally ordered relation” E<x̄ȳ :⇐⇒ tp(x1, x2) = tp(y1, y2),

• and the “equally circled relation”

Ecycx̄ȳ :⇐⇒
∨

σ∈A3

tp((x1, x2, x3)σ) = tp(y1, y2, y3)

• Both are special cases of a general “equally oriented relation” between strict m-tuples x̄

and strict n-tuples ȳ, which is σ ∈ Am ⇐⇒ τ ∈ An where σ ∈ Sm and τ ∈ Sn are such
that xσ(1) < · · · < xσ(m) and yτ(1) < · · · < yτ(n).

E< is interdefinable with the betweenness relation and Ecyc with the separation relation, since
by definition they are the normalised structures of (Q, <) and (Q, cyc). Alternatively, b ∈
conv(a, c) :⇐⇒ E<abbc and

←−→
abcd :⇐⇒ Ecycabccda, and E< and Ecyc do not define the linear

and cyclic ordering respectively, hence by the classification of the reducts (Q, E<) = (Q,betw)
and (Q, Ecyc) = (Q, sep).

Both equivalence relations have exactly two classes (on strict tuples). When E< is definable,
then the E<-classes and the Ecyc-classes are pairwise interdefinable as they are fixed by the
same automorphisms, namely those not turning around the orientation. Thus is it sufficient to
consider Ecyc.

In (Q,<) and in (Q, cyc), the Ecyc-classes are definable, whereas in (Q, sep) and in (Q,betw)
the two Ecyc-classes are conjugate. Thus the two conjugate Ecyc-classes correspond to the two
linear (or cyclic) orderings inducing the betweenness (or separation) relation: Aut(Q, <) equals
the stabiliser of the Ecyc-classes in Aut(Q,betw), and Aut(Q, cyc) in Aut(Q, sep).

Lemma 2.10 acleq(∅) = dcleq(∅) holds in each of (Q, <), (Q, cyc) and (Q, ∅), and acleq(∅) =
dcleq(Q/Ecyc) in (Q, betw) and (Q, sep).

(Group theoretic translation: An equivalence class of a finite Aut-invariant equivalence relation
on Qn is itself invariant (as a set) in the first three structures, and invariant under those
automorphisms fixing the Ecyc-classes in the other two structures.)

Proof: acl(∅) = ∅ in all five structures. Thus the result holds for (Q, <) and (Q, ∅) because
they weakly eliminate imaginaries (easy, or see [P1]).

Elements of acleq(∅) correspond, up to interdefinability, to closed subgroups of finite index of
the automorphism group (by [P1]). Suppose H is a proper closed subgroup of Aut(Q, cyc) of
finite index. According to the classification of the reducts of (Q, <), H is not a supergroup of
Aut(Q, <), thus H ∩Aut(Q, <) is a subgroup of finite index of Aut(Q, <): contradiction.

The same argument now shows that Aut(Q, <) and Aut(Q, cyc) are the only proper closed
subgroups of finite index of Aut(Q, betw) and Aut(Q, sep) respectively. ¤
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3 Two extreme cases

Let P = (Q, <, P1, . . . , Pn) be an expansion of (Q, <) by a partition of Q such that P eliminates
quantifiers, as described in Lemma 1.1. EP has been defined to be the relation “having same
strong type over ∅ ”, which is the finest ∅-definable finite equivalence relation in P. Two elements
x < y of same type have the same Lascar strong type, since they have the same type over the
elementary submodel Q \ [x, y], hence EPxy =

∧n
i=1(x ∈ Pi ↔ y ∈ Pi).

Let R be an reduct of P. We consider two somehow opposite extreme cases: the case where
there is no ordering at all, and the case where there is a unique strong 1-type.

3.1 No ordering

Recall that RC denotes the expansion of R by predicates for the ER-classes. As ER is a
coarsening of EP, each ER-class is a union of predicates Pj .

Theorem 3.1 The reducts R of P− := (Q, P1, . . . , Pn) are, up to interdefinability, determined
by ER and the finite structure Q/ER given by the action of Aut(Q/ER) = Aut(R)/Aut(RC)
on the ER-classes.

Proof: Let C1, . . . , Ck be the ER-classes. It is easy to see that ER = ERC
. Thus 1-types

in RC are strong types and hence stationary. Now we work in RC , which has Morley rank 1
because P− does. Therefore forking is determined by the algebraic closure operator, which is
trivial. Suppose x and y have the same type p, and assume ā is disjoint from x and y. Then ā

is independent from x, and from y. It follows that tp(x/ā) = tp(y/ā), as they are the unique
non-forking extension of p. This implies immediately Aut(RC) = Sym(C1)×· · ·×Sym(Ck) and
RC = (Q, C1, . . . , Ck). It follows that R is determined by Aut(Q/ER) as Aut(R) consists of all
permutations of Q respecting ER and having image in Aut(Q/ER). ¤

Clearly, all coarsenings of EP− = EP occur as ER. If k is the total number of ER-classes and
e the number of infinite (i.e. non-singleton) classes, all subgroups of Se × Sk−e are possible as
Aut(Q/ER).

Moreover, it follows from the theorem that acleq(∅) in R consists, up to definable closure, of
the ER-classes, that is Aut(acleq(∅)) = Aut(Q/ER). This is because we may assume R = RC ,
hence without loss of generality R = P−. There the claim holds since all types are stationary.

3.2 Only one strong type

Theorem 3.2 Let R be a reduct of P with a unique strong 1-type over ∅, i.e. without non-
trivial finite Aut(R)-invariant equivalence relations on R. Then R is a reduct of (Q, <′) where
<′ is a dense linear order on Q.

Proof: An n-ary relation S is called symmetric if |= S(x̄) ⇐⇒ |= S(x̄σ) for all σ ∈ Sn where
(x1, . . . , xn)σ = (xσ(1), . . . , xσ(n)).

Claim Let S be an n-ary symmetric relation that is ∅-definable in P. Then S is ∅-definable
in P− := (Q, P1, ..., Pn).

10



Proof: Suppose two n-tuples x̄ and ȳ have the same type in P−. Then for some permutation
σ ∈ Sn, x̄σ and ȳ have the same type in P. It follows P |= S(ȳ) ⇐⇒ P |= S(x̄σ) ⇐⇒ P |=
S(x̄). ♦

Claim Let R be as in the theorem. Given two strict n-tuples x̄ and ȳ, there is some x̄σ having
the same R-type as ȳ.

Proof: For fixed ȳ, we define

S(z̄) :⇐⇒ z̄ is strict and z̄σ ≡R ȳ for some σ ∈ Sn

Since S is symmetric, it is ∅-definable in P− by the first claim. On the other hand, S is ∅-
definable in R, hence (Q, S) does not define a non-trivial finite equivalence relation. It follows
from Theorem 3.1 that S is ∅-definable in the trivial structure (P, ∅). Since it holds for ȳ, it
holds for all strict n-tuples, in particular for x̄. ♦

Now by Cameron’s theorem (Theorem 6.1 in [C1], or Theorem 3.3 below), R is a reduct of a
dense linear order on Q. ¤

We will see in Proposition 4.3 that <′ can be chosen to be ∅-definable in P.

3.3 A proof of the remaining part of Cameron’s theorem

In this section, we prove

Theorem 3.3 (Cameron) Let M be a countable structure such that Aut(M) acts transitively
on [M ]n for all n. Then M is isomorphic to a reduct of (Q, <).

Cameron’s original Main Theorem 6.1 in [C1] is equivalent to Theorems 2.1 and 3.3 here. The
latter follows easily from the following two model theoretic lemmas.

Lemma 3.4 If M is a structure which is indiscernible with respect to an ordering <, then
there is an M′ ≡M, which is indiscernible of same type with respect to some open dense linear
ordering <′.

Note that the orderings <, <′ need not to be definable in M, M′ respectively.

Proof: Choose (by the usual compactness and Ramsey arguments) an M′′ ≡M containing an
infinite indiscernible sequence (I,<′) of same type as (M,<), where <′ is an open dense linear
order. “Same type” here means that for all n, all tuples m1 < . . . < mk in M and i1 <′ . . . <′ ik

in I and all formulas ϕ

M |= ϕ(m1, . . . ,mk) ⇐⇒ M′′ |= ϕ(i1, . . . , ik).

We show with Tarski’s test that I is an elementary substructure of M′′:

Assume M′′ |= ∃xϕ(x, b̄′) with b̄′ ∈ I. Then for a tuple b̄ in M of same <-order type as the
<′-order type of b̄′, we have M |= ∃xϕ(x, b̄), that is M |= ϕ(a, b̄) for some a. Choose a′ ∈ I

such that (a′, b̄′) has same order type as (a, b̄), which exists because <′ is dense and open. It
follows that M′′ |= ϕ(a′, b̄′). Hence I 4 M′′ and we let M′ = I. ¤

Lemma 3.5 Let M be a countable structure. Equivalent are:

11



(a) For all n, the automorphism group of M acts transitively on [M ]n.

(b) M is an indiscernible sequence with respect to some linear ordering <.

Proof: b) =⇒ a): Given two elements of [M ]n, then ordered as ascending strict n-tuples they
have the same type.

a) =⇒ b): M is ℵ0-categorical, because Aut(M) has finitely many orbits on Mn for each
n. Hence one can find an infinite sequence I of pairwise distinct indiscernibles in M. Up to
permutation, each finite A has the same type as any subset of I with the same cardinality as
A. Hence A admits an ordering as indiscernibles. But this is enough (by compactness or by
König’s lemma) to get an indiscernible ordering on M . ¤

Proof of Theorem 3.3: Let M be as in the theorem. Then M is ℵ0-categorical and admits
an indiscernible ordering < by Lemma 3.5, which by Lemma 3.4 and the ℵ0-categoricity can be
chosen to be dense and open. Indiscernibility implies Aut(M,<) ⊆ Aut(M).

(In fact, from the classification of the reducts one sees that the original ordering < is already
dense if M is not trivial, but it might have a maximum or a minimum in case M is a cyclic
ordering or a separation relation.) ¤

4 Definable generalised orderings

Terminology We call any structure isomorphic to one of the five reducts of (Q, <) a generalised
ordering, linear and cyclic orderings are oriented, betweenness and separation relations are
unoriented orderings, and an infinite set without structure is called the trivial case.

Let again P = (Q, <, P1, . . . , Pn) be an expansion of (Q, <) by a partition of Q and eliminating
quantifiers. Our aim is to describe all ∅-definable generalised orderings in P.

Let B = (B1, . . . , Bk) be an ordered partition of Q such that each Bi is a union of predicates
Pj that are pairwise dense in each other. Let <+ denote the ordered disjoint sum of orders, let
<−1 be the reversed ordering of <, and <1 = <. Then in P there are definable linear orderings

(Q, <B,χ) := (B1, <
χ(1)
B1

) <+ · · ·<+ (Bk, <
χ(k)
Bk

)

on Q for every such B and every χ : {1, . . . , k} → {−1, 1}.
Two such orderings <B,χ and <B′,χ′ are equal if and only if B = B′ and χ and χ′ coincide on
the infinite Bi; and interdefinable iff equal or reversed. An ordering <B,χ is dense and open if
and only if each singleton Bi is put between two infinite blocks Bi−1 and Bi+1.

Lemma 4.1 P eliminates imaginaries, and dcleq(∅) = acleq(∅) holds.

(Cf. the explanation after Lemma 2.10; elimination of imaginaries means that the stabilizer of
an element in acleq(∅) equals the pointwise stabilizer of some tuple of elements in P.)

Proof: Clearly, P has the following property: if ā ≡c̄ b̄, then there is a sequence ā = ā0 ≡c̄

ā1 ≡c̄ ā2 · · · ≡c̄ āk = b̄ such that āi+1 differs from āi by just one element. This shows that
AutA∩B(P) = 〈AutA(P), AutB(P)〉 for finite A,B, which is Lascar’s criterion for weak elimi-
nation of imaginaries. This implies acleq(∅) = dcleq(acl(∅)). But acl(∅) = dcl(∅) in P. Finally,
weak elimination implies full elimination because P is a totally ordered structure. ¤
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Corollary 4.2 In P, there is no non-trivial ∅-definable finite equivalence relation on the real-
isation set of a complete type (i.e. on an orbit of Aut(P) on some Pn).

Proposition 4.3 Any ∅-definable generalised ordering in P is a reduct of some <B,χ.

We have defined a generalised ordering to be dense. Proposition 4.3 holds and is proved for the
wider class of substructures of generalised ordering.

Proof: Let <′ be a ∅-definable linear order in P. Obviously, there are only two linear orders
∅-definable in (Q, <), namely < and the reversed order <−1. Thus the restriction of <′ to Pi

must either equal < or <−1, and as in the proof of Lemma 1.1, quantifier elimination implies
that for i 6= j, either Pi <′ Pj or Pj <′ Pi, or Pi and Pj are dense in each other with respect
to <′ (where the last case can only happen when Pi and Pj are dense in each other w.r.t. <).
Density w.r.t. <′ is an equivalence relation on {P1, . . . , Pn} and defines a partition B such that
<′ equals some <B,χ.

Now let cyc′ be a ∅-definable cyclic order in P. As above, cyc′ restricted to Pi must be either
cyc or cyc−1. Assume first that some Pi is dense in Q with respect to cyc′. Then < on Pi allows
to define a cut in cyc′, namely the cut at infinity in Pi, and therefore yields a ∅-definable linear
order inducing cyc′. If no Pi is dense, then there is a cut in cyc′ determined by two predicates
Pi, Pj , which again allows to define without parameters a linear ordering inducing cyc′.

Assume finally that O is a ∅-definable betweenness or separation relation, and let Ecyc be the
equivalence relation which is interdefinable with the separation relation definable from O, as in
Section 2.3.2. Let C be an Ecyc-class. Then C is definable in P by Lemma 4.1, so (Q, O, C) is
a reduct of P and defines the two linear (cyclic respectively) orderings inducing O. Hence O is
a reduct of some <B,χ. ¤

For further reference in Section 5.3, we note a special case:

Remark 4.4 If all predicates Pi are convex and k is the number of finite Pi, then there are, up
to interdefinability,

(
n−k−1

k

) · k! · (n− k)! · 2n−k−1 dense and open ∅-definable linear orderings,
and

(
n−k

k

) · k! · (n− k − 1)! · 2n−k−1 dense ∅-definable cyclic orderings.

5 Reducts of (Q, <) with a partition into convex sets

In this section we examine expansions of (Q, <) by a partition into convex sets. We will describe
the reducts in Theorem 5.1 and Proposition 5.8. As usual, we assume that the expansion has
quantifier elimination, i.e. that it is of the form Q := (Q, <, Q1, . . . , Qn) where Q1 < Q2 < · · · <
Qn and the Qi are either singletons, or infinite without maximum and minimum. (Note that
any expansion of (Q, <) by convex sets is interdefinable with such an expansion, but possibly
with quantifiers).

First we look at two special cases of this situation:

(1) Let (Q, <, R0, . . . , Rn) be an expansion where R0 < R1 < · · · < Rn are all infinite convex
sets without maximum and minimum. Let <i := <¹Ri . Then (Q, <, R0, . . . , Rn) is interdefinable
with the “free union of n + 1 dense linear orders” (Q, R0, <0, . . . , Rn, <n). In particular

Aut(Q, <, R0, . . . , Rn) = Aut(R0, <0)× · · · ×Aut(Rn, <n)
∼= Aut(Q, <)× · · · ×Aut(Q, <).
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(2) The expansion by constants (Q, <, a1, . . . , an) is interdefinable with (Q, <, Q0, . . . , Q2n)
where Q2i−1 = {ai} and Q2i = (ai, ai+1) with a0 = −∞ and an+1 = +∞. It is clear that for a
choice of predicates R0, . . . , Rn as above,

Aut(Q, <, a1, . . . , an) = Aut(Q \ {a1, . . . , an}, <, Q0, Q2, . . . , Q2n)
∼= Aut(Q, <,R0, . . . , Rn).

It follows that the reducts of (Q, <, a1, . . . , an) in which the constants are definable are in
one-to-one correspondence with the reducts of (Q, <,R0, . . . , Rn).

5.1 Classification of the reducts

Let R be a reduct of Q with ER-classes C1, . . . , Ck; say C1, . . . , Ce are infinite and Ce+1, . . . , Ck

finite, hence singletons. Recall that each Ci is a union of predicates Qj . Unless otherwise spec-
ified, acleq(∅) and Aut(acleq(∅)) will always be meant in R, i.e. Aut(acleq(∅)) is the group of
permutations of acleq(∅) induced by Aut(R). Let AutC(acleq(∅)) be the normal subgroup of
Aut(acleq(∅)) fixing all classes Ci setwise.

The aim now is to prove:

Theorem 5.1 R is determined by ER, the action of Aut(acleq(∅)), and the generalised orde-
rings Oi induced on the infinite classes Ci by RC .

These generalised orderings Oi will be introduced in Lemma 5.2; they are completely known
by Proposition 4.3. An analysis of acleq(∅) comes in Proposition 5.6. In particular there will be
only finitely many possibilities for the data above. A description of how R is determined by
these data follows in Proposition 5.8.

Lemma 5.2 The induced structure on an infinite Ci by RC is a generalised ordering Oi.

Note that Oi is only determined up to orientation, but otherwise unique.

Proof: Since Ci ∈ acleq(∅), the strong types in RC = (R, C1, . . . , Ck) are the same as in R,
therefore ERC

= ER. It follows that the induced structure RC ¹Ci has a unique strong 1-type.
Now RC ¹Ci is a reduct of Q ¹Ci , hence a generalised ordering as it satisfies the hypotheses of
Theorem 3.2. ¤

Unlike the situation in Section 3.1, fixing ER-classes can induce additional structure on the
other classes:

Example Let A be an infinite predicate together with a dense betweenness relation betwA,
and an equivalence relation E with two infinite classes without structure on the complement of
A. We add additional structure such that the automorphisms are exactly the maps that respect
betwA and E and exchange the two E-classes iff they change the orientation of the order on A.
Then fixing the E-classes induces a linear order on A. ¤

Let R−
C be the reduct (Q, C1, . . . , Ck, O1, . . . , Oe) of RC , i.e. the free union of the structures

(C1, O1), . . . , (Ce, Oe) plus the singletons Ce+1, . . . , Ck. Furthermore, let R+
C be the expansion

of RC by the (imaginary) elements in Ci/Ecyc
Ci

for all i for which Oi is an unoriented ordering
(where Ecyc

Ci
is the equivalence relation interdefinable with Oi as defined in Section 2.3.2).
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Because R+
C is an expansion of RC by finitely many elements of acleq(∅), we get on the one

hand that R+
C has finite index over RC , on the other hand that ER+

C
= ER. This implies with

the proof of Lemma 5.2 that the structure induced on Ci by R+
C is a generalised ordering O+

i

expanding Oi. We will see in Proposition 5.6 that R+
C already the expansion by all of acleq(∅).

Lemma 5.3 O+
i is the oriented version of an unoriented ordering Oi, and equals Oi in the

other cases.

Proof: As R+
C has finite index in RC , the index

∣∣Aut(RC) ¹Ci
: Aut(R+

C) ¹Ci

∣∣ is finite. Then
the index of the completions

∣∣Aut(Ci, Oi) : Aut(Ci, O
+
i )

∣∣ is finite, too. Hence O+
i equals Oi

if the latter is trivial or already oriented, and is the oriented version of Oi in the other cases
because we have added the “orientations” Ci/Ecyc

Ci
. ¤

Lemma 5.4 Aut(R−
C) ∼= Aut(C1, O1) × · · · × Aut(Ce, Oe)

Aut(R+
C) ∼= Aut(C1, O

+
1 ) × · · · × Aut(Ce, O

+
e )

The isomorphisms are the natural isomorphisms as permutation groups.

Proof: The first statement is by definition of R−
C .

If M is a structure and A ⊆ M , we let M(A) be the expansion of M by constants for the
elements of A.

Claim Any relation definable on Ci in R+
C(Q \ Ci) is a generalised ordering.

Proof: Assume that new structure on Ci is definable with parameters ā ∈ Q\Ci. The structure
R+

C(ā) is a reduct of Q(ā), which is also an expansion of (Q, <) by convex sets. Hence we get the
result by Theorem 3.2 if we show that the induced structure on Ci by R+

C(ā) has a unique strong
1-type. We will work in R+

C and show that fixing pointwise Q \ Ci does not induce new strong
1-types on Ci. For this, refine ER on Ci by the the equivalence relation “having same strong
type over the union of the other ER-classes”. It is ∅-definable because of the ℵ0-categoricity
and has finitely many classes because even in Q there are only finitely many strong types in Ci

over Q \ Ci. Hence it equals ER. ♦

Claim R+
C(Q \ Ci) does not induce more structure on Ci than R+

C .

Proof: If ā, b̄ ∈ Q \ Ci have the same type in Q, there is α ∈ AutCi(Q) mapping ā onto b̄.
Hence ā and b̄ induce the same generalised ordering S on Ci. Since Q has only finitely many
types of given length, S has finite orbit under Aut(R+

C). This implies that the stabiliser of S

has finite index in Aut(R+
C). As in the proof of Lemma 5.3 we can conclude from the finiteness

of
∣∣Aut(R+

C)¹Ci : Aut(R+
C(ā))¹Ci

∣∣ that
∣∣Aut(Ci, O

+
i ) : Aut(Ci, S)

∣∣ is also finite. Because O+
i is

already oriented, O+
i = S. ♦

The second claim shows that every automorphism of (Ci, O
+
i ) can be extended by the identity

to an automorphism of R+
C , which proves the second statement. ¤

Corollary 5.5 Ci is stably embedded in RC , i.e. Aut(Ci, Oi) = Aut(RC)¹Ci .

Proof: If α ∈ Aut(Ci, Oi) preserves O+
i , it can be extended by the identity to an automorphism

of R+
C . In the other case, choose β ∈ Aut(RC) which also changes the orientation on Ci. Then

extend β ¹Ci ◦ α and compose with β−1. ¤
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Let O−i be the unoriented version of an oriented Oi, and equal Oi in the other cases. Let
Cor ⊆ acleq(∅) consist of the classes C1, . . . , Ck and the imaginary elements in Ci/Ecyc

Ci
for the

infinite Ci for which O−i is not trivial.

Proposition 5.6 In R, acleq(∅) = dcleq(Cor).

(That is: An automorphism of R fixing the equivalence classes in Cor setwise, fixes all the
elements of acleq(∅).)
Proof: By definition of R+

C , Aut(R+
C) is the stabiliser of the algebraic elements in Cor. Now

an algebraic element not definable over those would correspond to a proper closed subgroup
of finite index. But according to Lemma 5.4, Aut(R+

C) is a direct product of groups without
proper closed subgroups of finite index, hence itself a group without proper closed subgroups
of finite index. ¤

Remark: This proposition clarifies what is meant with “the action of Aut(acleq(∅))” in The-
orem 5.1, as an automorphism of acleq(∅) is determined by its action on the finitely many
imaginary elements in Cor. For Proposition 5.6, one could make Cor even smaller by throwing
away the elements Ci/Ecyc

Ci
for which Oi is oriented.

Corollary 5.7 Aut(acleq(∅)) is finite. ¤

Proposition 5.8 Aut(R) consists of all α ∈ Sym(Q) such that

• α respects ER (which allows to define Cα(i) := α[Ci]);

• α ¹Ci : (Ci, O
−
i )→ (Cα(i), O

−
α(i)) is an isomorphism for all i 6 e;

• the induced map ᾱ ∈ Sym(Cor) is in Aut(Cor).

Proof: Each of the conditions makes sense by the previous one. In particular, the induced map
exists because isomorphisms (Ci, O

−
i )→ (Cj , O

−
j ) map the orientations Ci/Ecyc

Ci
onto Cj/Ecyc

Cj
.

It is clear that automorphisms of R have to satisfy the conditions. (For the second, note that
α[O−i ] is definable from Oα(i), therefore α[O−i ] and O−α(i) are equal as unoriented generalised
orderings of same type).

Conversely, assume that α satisfies the conditions. Then there is β ∈ Aut(R) inducing the
same map β̄ = ᾱ on Cor. Then γ := β−1 ◦ α still satisfies the conditions, but fixes Cor.
Hence for infinite Ci, γ ¹Ci is not only an O−i -isomorphism, but an O+

i -isomorphism. Thus
γ ∈ Aut(R+

C) 6 Aut(RC) by Lemma 5.4. ¤

This proves Theorem 5.1 and Thomas’ conjecture for Q, since Aut(R) is determined by finitely
many data.

5.2 Complements

(1) We consider Cor as a two-sorted finite structure Cor: the first sort consists of the classes
C1, . . . , Ck and is partitioned by four colours, one for each type of induced generalised ordering
O−i , plus one for singleton classes; and there is a function mapping the elements of Ci/Ecyc

Ci

(of second sort) onto Ci. Then Theorem 5.8 shows that a reduct R is determined by Cor and a
sub-permutation group of Aut(Cor). All subgroups occur.
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(2) It is possible to find sections of the canonical epimorphism Aut(R) → Aut(acleq(∅)).
Choose

• an order-reversing involution ιi on each Ci for which O−i is not trivial, and

• an isomorphism αij : (Ci, O
−
i )→ (Cj , O

−
j ) for all (i, j) for which Ci and Cj are conjugate

under Aut(acleq(∅)),

such that αii = id, αjk ◦ αij = αik, and ιj ◦ αij = αij ◦ ιi, and construct automorphisms
from these maps as described in the proof of Proposition 5.8. Then Aut(R) is a generalised
semi-direct product

Aut(RC)oAutC(acleq(∅)) Aut(acleq(∅))
as in the following fact.

Fact 5.9 (generalised semi-direct product) Let H, N be groups and α : H → Aut(N) a
morphism, let KN 6 N , KH 6 H and ϕ : KN → KH an isomorphism such that

(1) ϕ(k)h = ϕ(kα(h)) for k ∈ KN and h ∈ H, and

(2) nα(ϕ(k)) = nk for k ∈ KN and n ∈ N .

The generalised semi-direct product NoK H is the group (NoH)/K where K := {(n−1, ϕ(n)) |
n ∈ KN}.
Inner version: If N C G and H 6 G such that G = HN and K = H ∩N , then G is isomorphic
to the generalised semi-direct product N oK H where α is conjugation and ϕ the identity.

If N ∼= Mn and H 6 Sn acts on the coordinates of the product, we get a generalised wreath
product M oK H.

5.3 The case n = 2: reducts of (Q, <,Q1, Q2) and (Q, <, a)

Theorem 5.10 Let Q1 be a proper initial segment of Q without supremum, Q2 its complement.
Q = (Q, <,Q1, Q2) has 53 reducts up to interdefinability, and 32 reducts up to isomorphism.

Proof: According to our analysis, we get:

(A) 29 reducts R where Q1 is definable:

(a) 25 reducts (15 up to isomorphism) with Aut(R) ∼= Aut(Q1, O1) × Aut(Q2, O2) for gen-
eralised orderings Oi.

(b) 4 (3) reducts with Aut(R) ∼=
(
Aut(Q1, O1)×Aut(Q2, O2)

)
oZ2 for oriented generalised

orderings Oi (where Z2 is generated by an order-reversing involution).

According to Section 5.2 (1), they can also be counted as 9 reducts where a trivial structure
is involved, plus 2 · 2 · 5 other reducts: on each Ci = Qi two possible types of non-oriented
orderings O− times the number of subgroups of Z2×Z2, the automorphism group of two fixed
two-element sets.

(B) 11 reducts where Q1 is not definable, but EQ:
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(a) 7 (5) reducts with Aut(R) ∼= Aut(Ci, O) o Z2 for a generalised ordering O (where Z2 is
generated by an involution ι exchanging the two EQ-classes. In case O is oriented, there
are two non-interdefinable possibilities: either ι changes or respects the orientation, i.e. ι

maps O1 onto O2 or onto O−1
2 .)

(b) 2 (2) reducts with Aut(R) ∼= Aut(Ci, O) oZ2 (Z2 × Z2) and 2 (2) with Aut(R) ∼=
Aut(Ci, O)oZ2 Z4 for an oriented ordering O (generalised wreath product as after Fact 5.9;
the common Z2 is generated by an order-reversing involution fixing the classes; its com-
plement in Z2 × Z2 exchanges the classes; and Z4 is generated by an automorphism
exchanging the classes and reversing the order on one side).

Alternatively: 1 reduct with trivial induced structure, plus 2·(10−5) other reducts: two possible
non-trivial O− times the five of the ten subgroups of D8

4, i.e. the automorphism group of two
two-elements sets, exchanging the two sets, i.e. not counted under (A).

(C) 13 reducts where EQ is not definable:

Theorem 3.2 applies and provides 13 (5) generalised orderings with Remark 4.4.

Clearly, no isomorphisms are possible between reducts listed under different items. ¤

Theorem 5.11 Let a ∈ Q be a constant. Then (Q, <, a) has 116 reducts up to interdefinability
and 56 reducts up to isomorphism.

Proof: With the notations from the beginning of Section 5, the structure can be written as
(Q, <, Q0, Q1, Q2) with Q1 = {a}. There are four cases; the first three reduce to Theorem 5.10
(A) and (B), the fourth to Theorem 3.2 and Proposition 4.3:

• Reducts, where a is definable: they are in 1-1-correspondence with the reducts of (Q, <,

Q1, Q2) of Theorem 5.10: 53 reducts (32 up to isomorphism).

• Reducts where Q0 is definable and a has the same type as the elements in Q2. Then
the induced structure on Q2 ∪ {a} can’t be a linear order or a betweenness relation.
Theorem 5.10 (A) yields 15 (12) reducts in case (a) and 2 (2) in case (b). So we have 17
(14) reducts altogether.

Analogously with Q0 and Q2 exchanged. We get again 17 reducts, but no new isomorphism
classes.

• Reducts with a unique 1-type, but where the equivalence relation with classes Q0 and
Q2∪{a} is definable. The induced structure on each class is the cyclic order, the separation
relation or nothing. Theorem 5.10 (B) gives us 4 (3) reducts in case (a) and 2 (2) in case
(b), altogether 6 (5) reducts.

Analogously with Q0 and Q2 exchanged. We get 6 reducts, but no new isomorphism
classes.

• Reducts with a unique strong 1-type are by Theorem 3.2 reducts of a definable linear order.
By Remark 4.4, these are 4 linear orders, 4 betweenness relations, 4 cyclic orderings, 4
separation relations, and the trivial structure: 17 reducts (5 up to isomorphism).

Summa summarum: 53 + 17 + 17 + 6 + 6 + 17 = 116 (32 + 14 + 5 + 5 = 56) ¤
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6 Reducts of (Q, <) with dense predicates

In this section, we study the structure P = (Q, <, P1, . . . , Pn) where the Pi form a partition of Q
into dense subsets (n > 1). We conjecture that the reducts are given by the following data, and
hence that there are only finitely many possibilities (with Theorem 5.1 and Proposition 4.3):

• the equivalence relation ER with classes C1, . . . , Ck;

• a reduct R′ of (Q, C1, <
′
1, . . . , Cn, <′n) where <′i is a linear order on Ci that is ∅-definable

in P;

• an equivalence relation Edep
R , coarser than EP (as defined in Definition 6.13).

The reduct R should then be generated by R′ and the separation relation on each Edep
R -class,

except on those formed of predicates Pi with trivial induced structure. Theorem 3.2 shows the
conjecture in the case ER is trivial, and we will show in Theorem 6.14 the conjecture for the
case n = 2, or more generally for ER = EP.

The following is an example that is not covered by our methods:

Example 6.1 Let n = 4 and R = (Q, <P1∪P2 <+ <−1
P3∪P4

, P1 ∪ P3, P2 ∪ P4). In this example,
the ER-classes are P1 ∪ P3 and P2 ∪ P4, the Edep

R -classes are P1 ∪ P2 and P3 ∪ P4.

6.1 Induced structure

Let R be a reduct of P.

Lemma 6.2 Let C be an ER-class. If the induced structure on C is trivial, then the induced
structure on C over ¬C is trivial, and C does not induce any additional structure on ¬C.

Proof: Otherwise there are strict k-tuples x̄, x̄′ in C, an l-tuple ȳ in ¬C and a formula ϕ

such that |= ϕ(x̄, ȳ) and |= ¬ϕ(x̄′, ȳ). Moving x̄ and x̄′ slightly without changing their type
in the original structure P, we find pairwise disjoint strict k-tuples x̄1, . . . , x̄m, x̄′1, . . . , x̄

′
m for

arbitrarily large m, such that |= ϕ(x̄i, ȳ) and |= ¬ϕ(x̄′i, ȳ). Since the induced structure on C is
trivial, the formula ∃ȳ(∧m

i1
ϕ(x̄i, ȳ) ∧∧m

i1
¬ϕ(x̄′i, ȳ)

)
is realised by all strict tuples in C2km.

Now, chose x̄1 < x̄′1 < x̄2 < · · · < x̄′m. Since x̄i and x̄′i are of different type over ȳ, some
component of x̄i and its corresponding component of x̄′i are separated by a component of ȳ.
This is not possible if m > l.

The second part of the assertion is a consequence of the first. ¤

6.2 Independent predicates

Definition 6.3 In R, ∅-definable subsets D1, . . . , Dl of Q are called independent if whenever
x̄i, x̄

′
i ∈ Di have the same type in P, then (x̄1, . . . , x̄l) and (x̄′1, . . . , x̄

′
l) have the same type in

R.

It follows that, if Q is partitioned into ∅-definable independent D1, . . . , Dl, then R is a reduct
of (Q, <D1 , . . . , <Dl

, P1, . . . , Pn). Furthermore, Lemma 6.2 shows that if the induced structure
on some ER-class C is trivial, then C is independent from its complement ¬C.
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6.2.1 Dependence gives the separation relation

Proposition 6.4 Let R be a reduct of P, where P1 and P2 are strong types. Then P1 and P2

are dependent if and only if the separation relation is definable on Q.

Beginning of the proof: The ‘if’-direction is obvious. For the converse, we may assume
n = 2 because R ¹P1∪P2 is (trivially) a reduct of P ¹P1∪P2 . Furthermore we will assume in
the sequel that P1, P2 are definable. We will see that the definition of sep is invariant under
exchanging P1 and P2. Therefore the result will also hold in the more general case.

Thus we have the following situation: R is a reduct of (Q, <, P1, P2), the two predicates are
definable and dependent. It follows that sepP1

, sepP2
are definable, because the induced structure

on each Pi is non-trivial. Also it follows from Lemma 6.8 below that there is more than one
strong 1-type in P1 over P2, and conversely.

For b̄ = (b1, . . . , bm) ∈ P2, we let Eb̄ be the equivalence relation defined on P1 “to have same
strong type over b̄ ”. We may assume b1 < · · · < bm, and we let b0 = −∞ and bm+1 = +∞. The
Eb̄-classes are unions of intervals (bi, bi+1) ∩ P1. We say that Eb̄ jumps at bi if (bi−1, bi) ∩ P1

and (bi, bi+1) ∩ P1 are in different Eb̄-classes.

Fact Eb̄ jumps at every bi ∈ b̄ if b̄ is long enough.

(This is intuitively clear. Corollary 6.10 will provide a proof in a more general situation.)

Lemma 6.5 Assume the betweenness relation is not definable on P1, and let b̄ be long enough.
Then (−∞, b1) ∩ P1 and (bm,+∞) ∩ P1 are in the same class.

Proof: Choose for every i = 0, . . . , m an xi ∈ (bi, bi+1) ∩ P1, and a y ∈ P1 with xm < y. Then
¬Eb̄xixi+1, but Eb̄xmy.

Assume x0 and y are not equivalent. As the betweenness relation is not definable on P1, there
is a y′ < x0 such that (x̄, y) and (x̄, y′) have the same type in R. Thus there are b′1, . . . , b

′
m ∈ P2

such that consecutive elements in the sequence y′, x0, . . . , xm are not Eb′1...b′m-equivalent. But
the m elements b′1, . . . , b

′
m can’t cause jumps at these m + 1 consecutive pairs in the sequence:

contradiction. ¤

Now we are able to finish the proof of Proposition 6.4:

First case: The order is definable on P2. Then for a ∈ P1 and b1 ∈ P2

a < b1 ⇐⇒ ∃y ∈ P1

(
a 6= y ∧ ∀b2 . . . bm ∈ P2 (b1 < b2 < · · · < bm → Eb̄ay)

)
.

Then the order is definable on P1 ∪ P2. Also it follows that m = 1 and that Ebxy ⇐⇒ b /∈
conv(x, y), and clearly the situation is symmetric in P1 and P2: Eaxy for a ∈ P1 and x, y ∈ P2

also defines the negation of the betweenness relation. Hence the definition of the separation
relation is invariant under exchanging P1 and P2.

Second case: The betweenness relation is definable on P2. As <¹ P2 is algebraic over R,
the finest definable finite equivalence relation in (R, <¹ P2 , b) equals the finest definable finite
equivalence relation in (R, b). Hence b /∈ conv(x, y) is also definable in R, and we get the global
betweenness relation on P1 ∪ P2.

As the assumptions for the proposition are symmetric in P1 and P2, we get the same result if
the betweenness relation is definable on P1.
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Third case: The cyclic ordering is definable on P2 and the betweenness relation is not definable
on P1. Let x, y ∈ P1 and b1, . . . , bm ∈ P2 be pairwise distinct. Lemma 6.5 shows that the minimal
m such that Eb1...bm is not trivial is at least 2. Moreover, if m = 2, then

←−−→
xb1yb2 ⇐⇒ ¬Eb1b2xy,

and if m > 2, then

−−−→
b1xb2 ⇐⇒ ∃y ∈ P1

(
x 6= y ∧ ∀b3 . . . bm ∈ P2 (

−−−−−−−−→
b1b2b3 . . . bm → Eb̄xy)

)
.

Again, the global cyclic order on P1 ∪ P2 is definable from this. Hence we see that m = 2 and
that Eb1b2xy defines the negation of the separation relation. In particular, the same holds for
P1 and P2 exchanged.

Fourth case: The separation relation is definable on P2. As above, the finest definable finite
equivalence relation in (R, cyc ¹P2 , b1, b2) equals the finest definable finite equivalence relation
in (R, b1, b2). Hence the separation relation between P1 and P2 is also definable in R. ¤ of 6.4

Remark 6.6 It is easy to see directly the following:

(a) If the separation relation between P1 and P2 is definable, i.e. ←−−−−→x1y1x2y2 for xi ∈ P1 and
yi ∈ P2, then the separation relation on P1 ∪ P2 is definable.

(b) If the separation relation on P1 ∪ P2 is definable and a generalised ordering O defined on
P1, then O extends definably on P1 ∪ P2.

6.2.2 Dependence is trivial as a matroid

Throughout Section 6.2.2, we will assume that all Pi are definable in R.

Proposition 6.7 If P1, . . . , Pk are pairwise independent, then they are independent.

Beginning of the proof: We prove Proposition 6.7 by induction on k. We may therefore
assume that each selection of k− 1 out of P1, . . . , Pk is independent. The proof will include two
lemmas and will be completed at the end of Section 6.2.2.

By definition, independence of Pi1 , . . . , Pil
implies that there is only one strong 1-type in Pi1

over Pi2 ∪ · · · ∪ Pil
.

Lemma 6.8 If there is only one strong 1-type in P1 over P2 ∪ · · · ∪Pk, then P1, P2, . . . , Pk are
independent.

Proof: By assumption and Theorem 3.2, any c̄ ∈ C := P2∪· · ·∪Pk induces a generalised order-
ing on P1 (determined up to interdefinability). A longer tuple induces a compatible generalised
ordering, hence there is some c̄ ∈ C with maximal induced structure on P1 given by a relation
Oc̄. If d̄ has the same type as c̄ in the structure S := (Q \ P1, P2, . . . , Pk, <P2 , . . . , <Pk

), then,
because P2, . . . , Pk are independent, Oc̄ and Od̄ can only differ by orientation. The equivalence
relation Ex̄ȳ :⇐⇒ Ox̄ = Oȳ on P2 ∪ · · · ∪ Pk is definable in R ¹P2∪···∪Pk

, hence in S since the
former is a reduct of the latter. As in Lemma 4.1 and Corollary 4.2, one sees that S eliminates
imaginaries, acl(∅) = ∅, thus there is no non-trivial finite ∅-definable equivalence relation on a
complete type in S. Therefore Oc̄ = Od̄, and Oc̄ is ∅-definable in R.

Now, if x̄, ȳ ∈ P1 have the same R-type, they have the same Oc̄-type, and therefore the same
R-type over every tuple in C. This shows independence. ¤
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Now we assume P1, P2, . . . , Pk to be dependent. As a consequence of Lemma 6.2, the induced
structure on each Pi is non-trivial. By Lemma 6.8, there is more than one strong 1-type in P1

over its complement. We will show that this leads to a contradiction.

We consider finite subsets B of P2 ∪ · · · ∪ Pk such that there is more than one strong type in
P1 over B. Due to the induction hypothesis, B intersects each P2, . . . , Pk. Write EB for the
equivalence relation on P1 “to have same strong type over B”.

Lemma 6.9 If B is minimal with non-trivial EB, then EB jumps at each parameter from B.

Proof: Assume EB does not jump at b ∈ B and let b ∈ P2. Set B′ = B \{b} and B′′ = B′∩P2.
Consider the equivalence relation F (x, y) on P2 defined by ExB′ = EyB′ . Since P2, . . . , Pk are
independent, F is B′′–definable. Since EB does not jump at b ∈ B, a whole neighbourhood of
b in P2 belongs to the same F -class.

We conclude from this that the F -class A of b is B′′–definable. This can easily be checked
through the four cases of generalised orderings O induced on P2. There are only two cases
where one has to recur to the special nature of E. The first case is, when O is the betweenness
relation and B′′ = {b′′} is a singleton: Assume b′′ < b, then all y ∈ P2 with b′′ < y are in A.
With the notation B′′′ = B∩(P3∪· · ·∪Pk) this means that Eb′′yB′′′ = Eb′′bB′′′ . Since P2, . . . , Pk

are independent this implies Ex′′yB′′′ = Ex′′xB′′′ for all three distinct x′′, x, y ∈ P2 such that
x′′ is not between x and y. This implies that ExyB′′′ = Ex′y′B′′′ for all distinct x, y and x′, y′

in P2. So we have that A = P2 \ {b′′}. The second case, where O is separation and |B′′| = 2, is
treated similarly.

Therefore, if q is the O-type of b over B′′, EB is also defined by the formula

∃x ∈ P2

(
tpO(x/B′′) = q ∧ ExB′

)
,

contradicting the minimality of B. ¤

Corollary 6.10 If EB is non-trivial, then it jumps at each of its parameters.

Proof: Let B0 ⊂ P2∪· · ·∪Pk be minimal with non–trivial EB0 . The independence of P2, . . . , Pk

implies that a set B′
0 is minimal iff |B′

0 ∩ Pi| = |B0 ∩Pi| for i = 2, . . . , k. So, if b is any element
of B, we find a minimal subset B′

0 of B such that b ∈ B′
0. EB jumps at b since EB′0 does. ¤

To complete the proof of Proposition 6.7, choose a non-trivial EB such that B intersects P2

and P3 each in at least 3 elements. Write B ∩ P2 = {b0, . . . , bm} for b0 < · · · < bm, B ∩ P3 =
{c0, . . . , cl} for c0 < · · · < cl and set B′ = B ∩ (P4 ∪ · · · ∪ Pk).

Since sepP2
is definable, we can define the interval (b0, bm) ∩ P2 over b̄, similarly (c0, cl) ∩ P3 is

definable over c̄. ExyB jumps at x and y for all x, y. Thus

∀a 6= a′ ∈ P1 ∃x ∈ (b0, bm) ∩ P2 ∃y 6∈ P3 \ (c0, cl) ¬ExyB(a, a′)

iff (c0, cl) ⊂ (b0, bm). This shows that there are at least two possible types of b̄c̄ over B′, which
contradicts the independence of P2, . . . , Pk. ¤ of 6.7

6.2.3 Dependence defines an equivalence relation

Lemma 6.11 If sep is definable on P1 ∪ P2 and on P2 ∪ P3, then also on P1 ∪ P2 ∪ P3.

22



Proof: It is sufficient to show that sep is definable on P1 ∪ P3. If x1, x2 ∈ P1 and y1, y2 ∈ P3,

←−−−−→x1y1x2y2 ⇐⇒ ∃x−i x+
i ∈ P2

( ←−−−−−−−−−−→
x−1 x1x

+
1 x−2 x2x

+
2 ∧
←−−−−−−−−−→
x−1 x+

1 yx−2 x+
2 y2

)

¤

The lemma shows that dependence is an equivalence relation on the predicates. Next we show
that the equivalence classes are independent.

Proposition 6.12 Let Di be the union of all Pj which are dependent from Pi. If P1, . . . , Pk

are independent, then D1, . . . , Dk also.

Proof: Consider two long tuples x̄, ȳ with entries from D1 ∪ · · · ∪ Dk and same order type
in each Di. We construct new tuples of doubled length by replacing each element v of Di in
x̄, ȳ with two elements v−, v+ ∈ Pi such that v ∈ (v−, v+) and such that the intervals (v−, v+)
are pairwise disjoint. The new tuples have the same type by independence of the Pi, and an
automorphism moving one onto the other moves xi on some element y′i ∈ (y−i , y+

i ) because the
separation relation is definable on Di (Proposition 6.4) and the tuples are long. But then there
is an automorphism of P fixing all y−i , y+

i and moving y′i on yi. ¤

Definition 6.13 Let Edep
R be the equivalence relation on Q induced by dependence: x ∈ Pi and

y ∈ Pj are equivalent if and only if Pi and Pj are dependent in R.

The picture is now as follows: Let R be a reduct with ER = EP, and D an Edep
R -class. Then

either D consists of a single predicate with trivial induced structure, or D is a union of possibly
several predicates which are dense in each other in R, and the induced structure on D is one of
the four non-trivial reducts of (D,<D). The classes are independent, but the induced generalised
orderings on different classes are possibly linked.

6.3 The proof of the conjecture in case ER = EP

Let R be a reduct of P with ER = EP, i.e. all Pi are strong types. Let D1, . . . , Dl be the classes
of Edep

R . Define R′ := R∩ (Q, P1, <P1 , . . . , Pn, <Pn), and R< := R∩ (Q, D1, <D1 , . . . , Dl, <Dl
).

We will prove:

Theorem 6.14 R is of the form R′ ∪R< (with ∪ in the lattice of reducts).

Proof: First we need the following remark: If P1, P2 are in the same Edep
R -class Di, then the

equivalence relations Ecyc
P1

and Ecyc
P2

are interdefinable. This is clear as two triples in P1 are
equally oriented if and only if intercalated triples of P2 are equally oriented. Therefore the
orientations P1/Ecyc

P1
and P2/Ecyc

P2
are interdefinable, and interdefinable with Di/Ecyc

Di
. We let

P or ⊆ acleq(∅) consist of the predicates P1, . . . , Pn and the orientations Di/Ecyc
Di

for all Di

with non-trivial induced structure. Recall that R(A) denotes the expansion by constants for
the elements of A.

We have to show that each automorphism α of R′∪R< is an automorphism of R (the converse
is trivially true). It is not hard to see that Aut(R)¹Pi→Pj ,P or is dense in Aut(R′)¹Pi→Pj ,P or , i.e.
an automorphism of R′ coincide on finite tuples of Pi with automorphisms of R permuting P or
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in the same way. This is true because Aut(R′) equals the completion of the group generated by
Aut(R) and Aut(Q, P1, <P1 , . . . , Pn, <Pn).

As a special case we have that R and R′ induce the same structure on P or. So we may assume
that α leaves every Pi and the orientations on it invariant. We will now show that α coincides
on every finite part of each Di with some βi ∈ AutP or(R) that is the identity outside Di. Then
α = β1 ◦ . . . βl ∈ Aut(R), which will prove the theorem.

If the induced structure on Di is trivial, this follows immediately from Lemma 6.2.

If the induced structure on Di is non-trivial, we consider long tuples x̄ whose elements come
alternately from P1, . . . , Pn, at least four out of each Pj . Say P1 ⊆ Di. Then there is βi ∈
AutP or(R) coinciding with α on x̄ ∩ P1. Since α respects the separation relation on Di and
x̄ ∩ P1 is long enough, we can find β′i ∈ Aut(P) fixing α(x̄) ∩ P1 and moving the remaining
Di-part of βi(x̄) on α(x̄) ∩Di. Thus α and β′i ◦ βi coincide on x̄ ∩Di.

It is now sufficient to show that R(P or,Q\Di) does not induce more structure on Di as R(P or)
does. The proof works as for the second claim of Lemma 5.4:

Independence of the Di implies that there is only one strong 1-type in P1 over Q \Di (as in the
remark preceding Lemma 6.8). Therefore Q \ Di induces a generalised ordering on P1. Again
because of the independence, tuples in Q \ Di of same type induce the same structure. Since
there are only finitely many types, the induced structure is of finite index. But the orientations
are already fixed, hence there is no new induced structure on P1. Now the induced structure on
P1 together with the separation relation on Di completely determines the induced structure on
Di (Remark 6.6). ¤

In particular, this settles the conjecture for n = 2, as either ER = EP or ER is trivial.

In fact, the proof of the theorem shows that R is of the form R′′ ∪ R< where R′′ := R ∩
(Q, P1, . . . , Pn, P1/Ecyc

P1
, . . . , Pn/Ecyc

Pn
).

6.3.1 Ideas for the remaining cases

One possibility to prove the conjecture completely would be to develop a theory of dependence
for ER-classes. Another possibility would be to show the following: If R is a reduct where P1 and
P2 live in the same strong type, then R is a reduct of (Q, <′, P1∪P2, P3, . . . , Pn) for some linear
order <′ on Q that is ∅-definable in P. Example 6.1 might help to illustrate the difficulties.

7 The general case

We sketch a proof of a lower bound for the number of reducts in the general case.

Remark Let P = (Q, <, P1, . . . , Pn) be an expansion of (Q, <) by a partition of Q, eliminating
quantifiers, and let P′ = (Q, <, P ′1, . . . , P

′
n) be an expansion by a partition of dense predicates.

Then P has at most as many reducts as P′.

Sketch of a proof: This is clear if all the Pi are infinite, since then P is isomorphic to some
reduct (Q, <B,χ, P ′1, . . . , P

′
n) of P′. The idea now is to “blow up” singletons.

Let R be a reduct of P. With each ER-class C = Pi1 ∪· · ·∪Pil
we associate C ′ := P ′i1 ∪· · ·∪P ′il

,
and call P′/ER the set of these C ′. Fix order preserving bijections αi : Pi → P ′i for the infinite
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predicates Pi, and choose for each C ′ a ∅-definable generalised ordering O′ with the following
properties: (1) O′ is trivial if C is finite; (2) O′ is of the same type as the generalised ordering
O induced by R on C; (3) O and O′ are compatible via the αi, i.e. if β ∈ Aut{Pi}(R), then
α ◦ β ¹Pi

extends to an automorphism of O′.

Then we define a reduct R′ of P′ by letting Aut(R′) the closed subgroup generated by all
permutations of Q that act on P′/ER like an automorphism of R and respect the generalised
orderings O′ on the C ′. This defines an injection of the reducts of P to the reducts of P′. ¤
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