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Classical vs. Quantum: A love story.

@ Classical systems @ Quantum System
@ Observables C>°(M) @ Operators in H (Hilbert)
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“At this point we notice that this equation is i
beautifully simplified if we assume that "l still don't understand quantum theory."
space-time has 92 dimensions.”
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Geometric Quantization in a nutshell
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@ A real polarization P 3 ation.
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provide natural examples of real polarizations.
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o Flat sections equation: Vxs =0, VX tangent to P.
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Basics of Quantization

A connection on a vector bundle V isa map V : I'(V) — QY (M) @ I'(V)
satisfying:

Q V(o1 +02) =Voi + Voo

@ V(fo1) = (df)®o1+ fVo
for all sections o1 and o9 and functions f.

We write V xo for Vo applied to the vector field X (the covariant
derivative of ¢ in the direction X.)
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Basics of Quantization

@ Let L be a complex line bundle and s the unit section in some local
trivialization. Fix a connection V on L. Define the potential one-form
O of V, by
Vxs=—iO(X)s.

e Changing s by another section s’ = [s
Vxs =df(X)s—= fiO(X)s.
and © =0 — zi di.

o Locally as/t) = ¢/ for some real-valued function f, and dy» = e*/idf.
thus qu dy = —df|is real-valued.

@ So as curvV = iwl we can take locally a given © connection one-form
with dO© = w.
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Space for proofs
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Bohr-Sommerfeld leaves

Definition

A Bohr-Sommerfeld leaf is a leaf of a polarization admitting global flat

sections. o/e1 CJ(H@’)

__4) %M—
Example: Take M —W|t w=dtA cé@ P =<z >z LL the trivial

bundle with connection I-form © =1df ~ Vxo=X{o}—~i < 0, X >0
~~Flat sections: o(t.6) = a(t).el!Y [~ Bohr-Sommerfeld leaves are given
by the condition ¢ = 27k, k€ Z.

Liouville-Mineur- Arnold «~ this example is the canonical one.
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Bohr-Sommerfeld leaves: continued...

Theorem (Guillemin-Sternberg)

If the polarization is a regular fibration with compact leaves over a simply
connected base B, then the Bohr-Sommerfeld is given by,

BS = {pe M,(fi(p),---, fn(p)) € Z"}

@ In a semilocal cotangent model for the connection given by
Liouville-Mineur-Arnold, Bohr-Sommerfeld leaves coincide with
integral points.

@ For toric manifolds the base B may be identified with the image of
the moment map.
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Space for proofs
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Bohr-Sommerfeld leaves and Delzant polytopes

Theorem (Delzant)

Toric manifolds are classified by Delzant’s polytopes and the bijective
correspondence is given by the image of the moment map:

{toric manifolds} — {Delzant polytopes}

(M2, w, T",F) — F(M)

—

(t1,t2) - [20 : 21 & 22) = [20 @ €12y @ €229
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The case of fibrations

o Forreal polarization given by integrable systems Bohr-Sommerfeld
leaves are just “integral” Liouville tori.

If the leaf space B" is Hausdorff and the natural projection 7w : M?" — B™
is a fibration with compact fibers, then quantization is given by the count

of Bohr-Sommerfeld leaves. \
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Quantization: The cohomological approach

o Following the idea of Kostant when there are no global sections we
define the quantization of (M?", w,L,V, P) as

QM) =P H (M, 7).

k>0

@ 7 is the sheaf of flat sections.

Then quantization is given by:

Theorem (Sniatycki)

Q(M?") = H™(M?*",T), with dimension the number of Bohr-Sommerfeld
leaves.
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What is this cohomology?

@ Define the sheaf: Q) (U) = (U, A'P)..

@ Define C as the sheaf of complex-valued functions that are locally constant

P. Consi al (fine)re s ﬂ(
o) |

ur
0»(:)4‘ 0% B oL %ol ®az % %,lf}
A
o

The differential © rd

ogy.
© Use this resolution to obtain a fine resolution by twisting the previou
resolution with the sheaf 7.

057 58T SeoL BSen ...

with S the sheaf of sections of the line bundle L(®N1/?).

SPOILER
ALERT!
@ Computation kit: Mayer-Vietoris, Kiinneth formula, Remarkable

fact: S'-actions help prove semilocal Poincaré lemma (toric, almost toric,

semitoric case).
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Applications to the general case of Lagrangian foliations

This fine resolution approach can be useful for polarizations given by
general Lagrangian foliations.
Classification of foliations on the torus (Kneser-Denjoy-Schwartz theorem).
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The case of the torus: irrational slope.

7’
Consider X, = 77% + % with 7 € R\ Q. This vector field descends to
the quotient torus denote by P, the associated foliation in T?. Let (T?,w)

be the 2-torus with a symplectic structure w of integer class, then,

Theorem (Presas-Miranda)

e O(T?,7) is always infinite dimensional.
@ For the limit case of foliated cohomo/ogyg?? Q(T?, 7)=C@C if
2

the irrationality measure of ) is finite an J) is infinite
dimensional if the irrationality measure of 1 is infinite.

This generalizes a result El Kacimi for foliated cohomology.
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"Quantization Computation kit"” for regular foliations

Most computations rely on proving Kiinneth and Mayer-Vietoris (joint
with Presas)

@ Kiinneth formula: Let (M7, P1) and (Ma,P2) be symplectic
manifolds endowed with Lagrangian foliations and let 712 be the
induced sheaf of basic sections, then:

H"(My x Mz, Ji2) = @yt gen HP (M1, J1) @ HI(Ma, J2).

@ Mayer-Vietoris: Consider M < U UV & U NV, then the following
sequence is exact,
0= SRU(M) 5 SRQL(U)BS@0%(V) = SeQ5L(UNV) — 0.
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Application Il: Regular integrable system

Ij =(—¢c,e),j=1,2.
Computation 1: Q(I1 X Iz,w = dx1 Adxe; P = 8%2).

0.9

[ L —
0.4

—€ +€
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Application Il: Regular integrable system

Ij =(—¢c,e),j=1,2.
Computation 1: Q(I1 X Iz,w = dx1 Adxe; P = 8%2).
o HIy x I; J) = C*(I,C),

0.9

[ L —
0.4

Miranda (UPC) Geometric Quantization 2021 17 / 28



Application Il: Regular integrable system

Ij =(—¢c,e),j=1,2.

Computation 1: Q(I1 X Iz,w = dx1 Adxe; P = 8%2).
o HIy x I; J) = C*(I,C),
4 Hl(Il X IQ;J) =0.

0.9

[ L —
0.4
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Application Il: Regular integrable system

Ij =(—¢c,e),j=1,2.

Computation 1: Q(Iy X Iy,w = dxq ANdxa; P = 8%2).
o HIy x I; J) = C*(I,C),
o HY(I, x In; J) = 0.

Computation 2: Q(I1 x S}, w = dx1 A dfo; P = 8%1).

0.9
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Application Il: Regular integrable system

Ij =(—¢c,e),j=1,2.

Computation 1: Q(I1 X Iz,w = dx1 Adxe; P = 8%2).
o HIy x I; J) = C*(I,C),
o HY(I, x I;.J) = 0.

Computation 2: Q(I1 x S}, w = dx1 A dfo; P = 8%1).
o HO(I; x Sk 7) = 0 since BS leaves are isolated.

0.9
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Application Il: Regular integrable system

Ij =(—¢c,e),j=1,2.
Computation 1: Q(I1 X Iz,w = dx1 Adxe; P = 8%2).
o HIy x I; J) = C*(I,C),
o HY(I, x I;.J) = 0.
Computation 2: Q(I1 x S}, w = dx1 A dfo; P = 8%1).
o HO(I; x Sk 7) = 0 since BS leaves are isolated.
@ Consider 1 xS =U UV = (I; x (0.4,1.1)) U (I; x (—0.1,0.6)).

1 >

0.0
U
0.4
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Regular integrable system

Apply Mayer-Vietoris and computation 1 to obtain

H(V)® HY(U) — H'(Wy) @ H' (W) — H' (I x S}).
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Regular integrable system

Apply Mayer-Vietoris and computation 1 to obtain

H(V)® HY(U) — H'(Wy) @ H' (W) — H' (I x S}).

HO(V) = H(U) = H°(W;) = C*(I; x {0};C) and
HOY(Wy) = C>(I; x {0.5};C).
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Regular integrable system

Apply Mayer-Vietoris and computation 1 to obtain
H(V)® HY(U) — H'(Wy) @ H' (W) — H' (I x S}).
HO(V) = H(U) = H°(W;) = C*(I; x {0};C) and

HY(W5) = C*(I; x {0.5};C).Take fo € H°(V) and
fie HO(U) = Coo(Il X {0},@)
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Regular integrable system

Apply Mayer-Vietoris and computation 1 to obtain
H(V)® HY(U) — H'(Wy) @ H' (W) — H' (I x S}).
HO(V) = H(U) = H°(W;) = C*(I; x {0};C) and

HY(W5) = C*(I; x {0.5};C).Take fo € H°(V) and
fi € H'(U) = C*(I; x {0};C). The first map of the sequence is given by

fo ) 1 -1 Jo
f3 - ei@x efi()x fl
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Regular integrable system

Apply Mayer-Vietoris and computation 1 to obtain
H(V)® HY(U) — H'(Wy) @ H' (W) — H' (I x S}).
HO(V) = H(U) = H°(W;) = C*(I; x {0};C) and

HY(W5) = C*(I; x {0.5};C).Take fo € H°(V) and
fi € H'(U) = C*(I; x {0};C). The first map of the sequence is given by

(1) )1

0 if non BS,
C if there is one BS.

QN

Thus

Miranda (UPC) Geometric Quantization 2021 18 / 28



Regular integrable system

Computation 3: Q(I* x Tk; TF).
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Regular integrable system

Computation 3: Q(I* x Tk; TF).
By Kiinneth Hj(Ik X Tk;j) =0,if j £k, and

0 if non BS,

HE(IF < Tk, 7) =
( ) C if there is one BS.
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Regular integrable system

Computation 3: Q(I* x Tk; TF).
By Kiinneth Hj(Ik X Tk;j) =0,if j £k, and

Hk(Ik " 'I['k;j) _ 0 ?f non B.S,
C if there is one BS.

Computation 4:
n

Q(M72, pegi P(Torus)) = @ H (M; J) = CP, b= #BS.
j=1
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Toric Manifolds

What happens if we go to the edges and vertexes of Delzant's polytope?

Rotations of 2 and moment map

There are two leaves of the polarization which are singular and correspond
to fixed points of the action.
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Quantization of toric manifolds

Theorem (Hamilton)

For a 2n-dimensional compact toric manifold

QM) =H"(M;J)= € C

leBS,

with a BS,. the set of regular Bohr-Sommerfeld leaves.

In the example of the sphere Bohr-Sommerfeld leaves are given by integer values
of height (or, equivalently) leaves which divide out the manifold in integer areas.
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Key computation in a neighbourhood of an elliptic point

@ The coordinates we use on C are (s, ¢), where (r, ¢) are standard

polar coordinates and s = 572

@ Thenlw = ds Nd¢p = d(sd¢)l and the polarization is P = span{%},

@ The sections which are flat along the leaves are of the form a(s)e*?,
for arbitrary smooth functions a.

Miranda (UPC) Geometric Quantization 2021 22 /28



Action-angle coordinates with singularities

The theorem of Marle-Guillemin-Sternberg for fixed points of toric actions
can be generalized to non-degenerate singularities of integrable systems.

Theorem (Eliasson, M-Zung)

There exists symplectic Morse normal forms for integrable systems with
non-degenerate singularities.

Sem ;LmC

Liouville torus ke comp. elliptic kp, hyperbolic k¢ focus<focus
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Description of singularities

The local model is given in a covering by N = D¥ x Tk x D2("=k) and
w = Zle dp; N\ dO; + Z?:_lk dx; N dy;. and the components of the
moment map are:

© Regular f; =p; fori=1,... k;

Q Elliptic fi =27 +y? fori=k+1,...,ke;

© Hyperbolic f; = x;y; for i = ke + 1, ..., ke + kp;

Q focus-focus f; = wiyiv1 — wiv1yi, fiv1 = 2y + vip1yie for

i=ke+kyp+2j—1,75=1,.. k.

We say the system is semitoric if there are no hyperbolic components.
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Hyperbolic singularities

We consider the following covering
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Key point in the computation

We may choose a trivializing section of such that the potential one-form of
the prequantum connection is ©¢ = (zdy — ydz).

Theorem

Leafwise flat sections in a neighborhood of the singular point in the first
quadrant are given by

i

a(zy)e?

zy In

Yy

where a is a smooth complex function of one variable which is flat at the
origin.
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The case of surfaces

We can use Cech cohomology computation and a Mayer-Vietoris argument
to prove:

Theorem (Hamilton-M.)

The quantization of a compact surface endowed with an integrable system
with non-degenerate singularities is given by,

oM)=H'(M;J) =P eChHe P C,
peEH lEBS,
where H is the set of hyperbolic singularities.
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The rigid body

Using this recipe and the quantization of this system is

QM) =H'(M;J)= P(C))* e B C.

PEH beBS

Comparing this system with the one of rotations on the sphere ~~ This
quantization depends strongly on the polarization.
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