Aufgabe 1

Betrachten Sie die Parametrisierung der oberen Halbsphäre als Graph:

$$X: U = \{(u, v) \in \mathbb{R}^2 : u^2 + v^2 < 1\} \to \mathbb{R}^3 \quad X(u, v) = (u, v, \sqrt{1 - u^2 - v^2}).$$

Berechnen Sie den Flächeninhalt der oberen Halbsphäre.

Aufgabe 2

Sei $\widetilde{f}: \mathbb{R}^3 \to \mathbb{R}$ ein C^2 -Funktion. Sei $q \in \mathbb{R}^3$, so dass f(q) = 0 und $\frac{\partial f}{\partial z}(q) \neq 0$.

- (a) Zeigen Sie: $\exists \ W \subset \mathbb{R}^3$ offen, $q \in W$, so dass: $\Sigma = W \cap f^{-1}(\{0\})$ lässt sich als reguläres Flächenstück parametrisieren. Bestimmen Sie die Tangentialebene in einem Punkt der Parametrisierung. Hinweis: Satz über implizite Funktionen.
- (b) Sei $F: U \subset \mathbb{R}^2 \to \mathbb{R}^3$ eine C^2 -Abbildung mit f(F(x)) = 0 und $Df(F(x)) \neq 0$ $\forall x \in U$. Zeigen Sie $\forall x \in U$:

$$\nabla f(F(x)) \perp DF(x)(\mathbb{R}^2).$$