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Aufgabe 1 (4 Punkte)

Prove that for any 2-tensor aijτi⊗τj , the Ricci identity holds:

aij,kl = aij,lk + aimRmjlk + amjRmilk,

where aij,kl means aij,k,l-i.e., the covariant derivative with respect to τl of the tensor
aij,kτi ⊗ τj ⊗ τk.

Facts

Let Mn be an n-dimensional cone embedded in Rn+1 (i.e., λM = M for any λ > 0),
with zero mean curvature, with only singularity at the origin. Define the quantity

D :=
∑
i,j,k

h2
ij,k −

n∑
k=1

|A|−2(hijhij,k)
2. (1)

Let x ∈ M and select the frame τ1, . . . , τn so that τn is radial (i.e., x
|x|) along the ray

lx through x, and so (as vectors in Rn+1) τ1, . . . , τn are constant along lx. One has
the following facts:

1. hnj = hjn=0 on lx for j = 1, . . . , n, and (hint: since M is a cone, hij(λx) =
λ−1hij(x), ∀λ > 0)

hij,n = −r−1hij on lx. (2)

2. Rearranging the expression of D, one can show that

D =
1

2

n∑
k=1

n∑
i,j,r,s=1

|A|−2(hrshij,k − hijhrs,k)
2,

3. Finally, one can prove that

D(x) ≥ 2|x|−2|A(x)|−2, ∀0 ̸= x ∈ M.

Remark: note that

n∑
i,j,r,s=1

(hrshij,k − hijhrs,k)
2 ≥ 4

n−1∑
i,j,r=1,s=n

(hrshij,k − hijhrs,k)
2,



which implies

D ≥ 2|A|−2

n∑
k=1

n−1∑
i,j,r=1

(hijhrn,k)
2.

Then use Codazzi equation and eqn. (2), one can complete the proof.

Aufgabe 2 (4 + 4 + 4 + 4∗ Punkte)

Suppose 2 ≤ n ≤ 6, and Mn is an n-dimensional cone embedded in Rn+1 (i.e.,
λM = M for any λ > 0), with zero mean curvature, with only singularity at the
origin. Suppose that M is stable, in the sense that the stability inequality holds:∫

M

(
|∇ξ|2 − ξ2|A|2

)
dHn ≥ 0

for every ξ ∈ C1
c (M) (note that 0 /∈ M , so such ξ vanish in a neighborhood of 0).

1. Prove the integral estimate

2

∫
M

r−2ξ2|A|2 ≤
∫
M

|A|2|∇ξ|2, ∀ξ ∈ C1
c (M).

Here r(x) denotes the Euclidean distance of x to the origin.

Hint: Use Facts: Item (3) in Simons identity to get a differential equation
for 1

2
∆M(|A|2). Then replace ξ by ξ|A| in the stability inequality.

2. Suppose that we have already shown that Item 1 (the integral estimate) is
valid even for those ξ that does not have compact support in M , but just with
the property that ξ is locally Lipschitz and∫

M

r−2ξ2|A|2 < ∞. (3)

For the cone M , we can write∫
M

φ(x)dHn(x) =

∫ ∞

0

rn−1

∫
S

φ(rω)dHn−1(ω)dr, (4)

for any non-negative continuous φ on M , where S = M ∩ Sn is a compact
(n − 1)-dimensional embedded submanifold. Use eqn. (4) to check that ξ1 :=

r1+ϵr
1−n

2
−2ϵ

1 , where r1 = max{1, r}, is a valid choice to ensure eqn. (3).

Hint: note that since M is a cone, we have |A(x)|2 = r−2|A( x
|x|)|

2.

3. Use the above ξ1 to test the integral estimate shown in Item (1), and show
that

2

∫
M

r2ϵr2−n−4ϵ
1 |A|2

can be estimated by the sum of integrals
∫
M∩{r>1}(·) and

∫
M∩{r<1}(·), and the

sum of these two integrals is in particular finite.

2



4. For 2 ≤ n ≤ 6, use Item (3) to conclude that |A|2 ≡ 0 on M .

Remark: This proves J. Simons [Sim] result on non-existence in Rn+1 of n-
dimensional stable minimal cones for 2 ≤ n ≤ 6. The proof follows from Schoen-
Simon-Yau [ScSiYa], which is slightly different from the original proof by Simons.
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Übungsgruppe auf jedes Lösungsblatt. Abgabe ist am Montag, 30.6.25, vor der
Vorlesung.

3


