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1. EMBEDDING

Recall that a subset M of a smooth manifold N is a smooth submanifold at p if there exist local
coordinates x1, . . . , xn defined near p in N and an integer 0 É k É n such that M is locally given
by x1 = ·· · = xk = 0. If M is locally a smooth submanifold of N at every point x ∈ M , we say M
is a (smooth) submanifold of N . This definition captures the "regularity" of the subset as it sits
inside N .

In the previous lecture, we justified the term "submanifold" by showing that there exists a
unique smooth structure on M compatible with the subspace topology, such that the inclusion
map ι : M → N is an immersion.

Now consider a smooth immersion f : M → N such that f : M → f (M) is a homeomor-
phism, where f (M) carries the subspace topology inherited from N . In this case, f (M) inherits
a smooth submanifold structure from M , and we call such an immersion an embedding.

To see this explicitly, take any q ∈ f (M) ⊂ N and choose p ∈ M with f (p) = q . Since f is an im-
mersion, there exist coordinate charts ϕ = (x1, . . . , xm) : U → Rm around p and ψ = (y1, . . . , yn) :
V → Rn around q with f (U ) ⊂V , such that:

y i ◦ f = xi for 1 É i É m,

and
y i ◦ f = 0 for m +1 É i É n.

Moreover, since f is a homeomorphism onto its image, there exists an open neighborhood W ⊂
N of q such that W ∩ f (M) =W ∩ f (U ). Therefore, within W ∩V , the set f (M) is precisely given
by ym+1 = ·· · = yn = 0, confirming that f (M) is a smooth submanifold of N .

2. PREIMAGE CONSTRUCTION

Recall condition (4) in the characterization of submersions: a smooth map f : M → N is a
submersion at p if there exist local coordinates {xi } around p and {y i } around f (p) such that
xi = y i ◦ f for 1 É i É n (where n = dim N ).

This local form immediately implies that the fiber f −1(q) is locally given by x1 = ·· · = xn = 0
near p, hence is a smooth submanifold of dimension m−n at p. This observation motivates the
following definition.

Definition 2.1. Let f : M → N be a smooth map. A point q ∈ N is called a regular value of f if f
is a submersion at every point x ∈ f −1(q).

The discussion above leads directly to the following fundamental result:
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Theorem 2.2 (Preimage Theorem). If f : M → N is a smooth map and q ∈ N is a regular value,
then f −1(q) is a smooth submanifold of M of dimension dim M − dim N . Moreover, for every
p ∈ f −1(q), the tangent space satisfies

Tp ( f −1(q)) = ker(Tp f : Tp M → Tq N ).

It is often convenient to think not in terms of the absolute dimension of f −1(q), but rather its
codimension—the amount by which its dimension is less than that of M . In the theorem above,
f −1(q) has codimension n = dim N .

Example 2.3 (The Sphere). The (n−1)-sphere Sn−1 ⊂ Rn can be realized as f −1(1), where f : Rn →
R is defined by

f (x1, . . . , xn) = x2
1 +·· ·+x2

n .

This map is smooth, and its derivative at any point is [2x1, . . . ,2xn]. Since this is nonzero for all
(x1, . . . , xn) ̸= (0, . . . ,0), every nonzero real number is a regular value of f . In particular, 1 is a
regular value, so Sn−1 is a smooth manifold of dimension n −1 (or codimension 1).

Example 2.4 (Orthogonal Group). The orthogonal group O(n), consisting of n ×n orthogonal
matrices, can be described as f −1(I ), where f : GL(n,R) → Sym(n) is defined by f (A) = AT A. Here
Sym(n) denotes the space of symmetric n ×n matrices. One can verify that I is a regular value of
f , hence O(n) is a smooth submanifold of GL(n,R) of dimension 1

2 n(n −1).

Definition 2.5. Let f : M → N be a smooth map. A point q ∈ N is called a critical value of f if it is
not a regular value.

Example 2.6. If dim M = m < n = dim N and f : M → N is a smooth map, then every point in the
image f (M) is a critical value of f . This is because at any p ∈ M, the linear map Tp f : Tp M →
T f (p)N cannot be surjective for dimensional reasons.

The preimage construction provides a powerful method for producing new manifolds from
old ones, often avoiding the need for explicit coordinate charts. The sphere and orthogonal
group examples demonstrate how naturally occurring geometric objects can be recognized as
smooth manifolds through this approach.

3. TRANSVERSALITY

We now address the natural question: when is the intersection of two submanifolds again a
submanifold? In general, the intersection of two submanifolds can be quite pathological. For
instance, when discussing partitions of unity, we showed that any closed subset K ⊂ M of a
manifold M can arise as the zero set of a non-negative smooth function f ∈C∞(M).

Let us consider the graph of this function:

Γ f := {(x, f (x)) ∈ M ×R : x ∈ M },

which is a smooth submanifold of M ×R. On the other hand, we have the zero section:

Γ0 := M × {0},

which is also a smooth submanifold. Their intersection is

Γ f ∩Γ0 = {(x,0) ∈ M ×R : f (x) = 0} = K × {0},
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which, in general, may have no manifold structure at all. This shows that submanifold intersec-
tions need not themselves be submanifolds.

We will now introduce a sufficient condition that ensures the intersection of two submani-
folds is again a submanifold. This condition is called transversality. The intuitive idea is that if
two submanifolds intersect “as little as possible,” their intersection will behave nicely and in-
herit a manifold structure.

Before giving the definition, we recall a basic lemma from linear algebra:

Lemma 3.1. Let V be a finite-dimensional vector space and V1,V2 ⊂ V be subspaces. Then the
sequence

0 →V1 ∩V2
i−→V

j−→V /V1 ⊕V /V2
k−→V /(V1 +V2) → 0

is exact, where:

• i : V1 ∩V2 →V is the natural inclusion
• j : V →V /V1 ⊕V /V2 is given by j (v) = (v +V1, v +V2)
• k : V /V1 ⊕V /V2 →V /(V1 +V2) is given by k(v1 +V1, v2 +V2) = (v1 − v2)+ (V1 +V2)

Proof of Lemma. We verify exactness at each term:

(1) At V1 ∩V2: The map i is injective, so ker i = 0.
(2) At V : We have ker j = {v ∈V : v +V1 = 0 and v +V2 = 0} =V1 ∩V2 = im i .
(3) At V /V1 ⊕V /V2:

• im j ⊂ kerk: For any v ∈V , k( j (v)) = k(v +V1, v +V2) = (v − v)+ (V1 +V2) = 0.
• kerk ⊂ im j : Suppose k(v1 +V1, v2 +V2) = 0. Then v1 − v2 ∈ V1 +V2, so we can write

v1−v2 = w1+w2 with wi ∈Vi . Let v = v1−w1 = v2+w2. Then j (v) = (v+V1, v+V2) =
(v1 +V1, v2 +V2).

(4) At V /(V1 +V2): The map k is surjective since for any w + (V1 +V2), we have k(w +V1,0+
V2) = w + (V1 +V2).

□

Theorem 3.2. Let M be a manifold, N1 and N2 be submanifolds of M, and p ∈ N1∩N2. If Tp M =
Tp N1 +Tp N2, then there exists a chart (U ,ϕ) at p of M such that

ϕ(U ) =V1 ×V2 ×W

ϕ(U ∩N1) = {0}×V2 ×W

ϕ(U ∩N2) =V1 × {0}×W.

Equivalently, there exists a coordinate system x1, . . . , xn at p and integers r1,r2 Ê 0 with r1+r2 É n
such that:

N1 is given by x1 = . . . = xr1 = 0 in a neighborhood of p,

N2 is given by xr1+1 = . . . = xr1+r2 = 0 in a neighborhood of p.

Proof. Since N1 and N2 are submanifolds of M , we can find submersions

f1 : M → Rr1 , f2 : M → Rr2

such that Ni = f −1
i (0) for i = 1,2. Let (x1, . . . , xr1 ) and (xr1+1, . . . , xr1+r2 ) be the coordinate compo-

nents of f1 and f2, respectively.
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Apply Lemma 3.1 to V = Tp M , V1 = Tp N1, V2 = Tp N2:

0 → Tp (N1 ∩N2)
i−→ Tp M

j−→ Tp M/Tp N1 ⊕Tp M/Tp N2
k−→ Tp M/(Tp N1 +Tp N2) → 0.

The condition Tp M = Tp N1 +Tp N2 implies Tp M/(Tp N1 +Tp N2) = 0, so the sequence becomes
short exact:

0 → Tp (N1 ∩N2)
i−→ Tp M

j−→ Tp M/Tp N1 ⊕Tp M/Tp N2 → 0.

In particular, j is surjective.
Now, the differential dp ( f1, f2) : Tp M → T0Rr1 ⊕T0Rr2 factors through j and the isomorphisms

Tp M/Tp N1 ⊕Tp M/Tp N2
∼= T0Rr1 ⊕T0Rr2

induced by the submersions fi . More precisely, we have a factorization:

dp ( f1, f2) =Φ◦ j ,

whereΦ : Tp M/Tp N1 ⊕Tp M/Tp N2 → T0Rr1 ⊕T0Rr2 is an isomorphism.
Since j is surjective andΦ is an isomorphism, it follows that dp ( f1, f2) is also surjective. There-

fore, ( f1, f2) : M → Rr1 ×Rr2 is a submersion at p.
By the submersion theorem, there exists a coordinate system (x1, . . . , xn) around p such that

( f1, f2) corresponds to the projection onto the first r1 + r2 coordinates. In these coordinates:

• N1 = f −1
1 (0) is given by x1 = ·· · = xr1 = 0

• N2 = f −1
2 (0) is given by xr1+1 = ·· · = xr1+r2 = 0

This completes the proof. □

If N1 and N2 satisfy the condition of the preceding theorem at p, we say that N1 and N2 are
transversal at p.

Corollary 3.3. Suppose N1 and N2 are transversal at p. Then:

(1) N1 and N2 are transversal in a neighborhood of p.
(2) N1 ∩N2 is locally a submanifold of M at p.
(3) Tp (N1 ∩N2) = Tp N1 ∩Tp N2.

Proof. The first statement follows from the continuity of the transversality condition. The sec-
ond and third statements are immediate consequences of the coordinate representation in the
preceding theorem. □
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