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November 21, 2025

1. FIBRE PRODUCTS, PULLBACKS, AND CARTESIAN SQUARES

We now present a unified framework that generalizes both the preimage construction and the
transversal intersection of submanifolds: the concept of fibre products or pullbacks.

1.0. Definition and Basic Properties. Consider a pair of smooth maps fi : Ni → M , i = 1,2.
Their fibre product (also called pullback) is defined as:

N1 ×M N2 = {(y1, y2) ∈ N1 ×N2 : f1(y1) = f2(y2)}.

Let pi : N1 ×M N2 → Ni be the natural projections, and define f = f1 ◦p1 = f2 ◦p2. This yields a
commutative diagram:

N1 ×M N2
p2 //

p1

��

f

$$

N2

f2
��

N1
f1

// M

In category theory, such a square is called a cartesian square or pullback square because it
satisfies the following universal property:

For any manifold X with maps g1 : X → N1 and g2 : X → N2 such that f1 ◦ g1 =
f2◦g2, there exists a unique map h : X → N1×M N2 making the following diagram
commute:

X
g2

''

g1

  

h
$$

N1 ×M N2 p2
//

p1

��

N2

f2
��

N1
f1

// M

1.0. Transversality and Smoothness. In the smooth category, the fibre product N1 ×M N2 may
not be a manifold in general. To ensure smoothness, we need a transversality condition.

Let (y1, y2) ∈ N1 ×M N2 and let p = f (y1, y2). We say that f1 and f2 are transverse at (y1, y2) if

Tp M = Im(Ty1 f1)+ Im(Ty2 f2).

we write f1 ⋔p f2 indicating that the transversality condition holds at the point p, that is , f1

and 2 are transverse at ∀(y1, y2) ∈ f −1(p). A commutative square of the above form is called
transversal cartesian at p if this transversality condition holds.
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As usual, if this condition holds for every (y1, y2) ∈ N1 ×M ×N2, we simply say that f1 and f2

are transverse and write
f ⋔ g .

Theorem 1.1 (Smoothness of Transverse Fibre Products). Suppose f1 and f2 are transverse at
(y1, y2). Then:

(1) f1 and f2 are transverse at all points in a neighborhood of (y1, y2) in N1 ×M N2.
(2) N1 ×M N2 is locally a submanifold of N1 ×N2 at (y1, y2).
(3) The tangent space is given by the fibre product:

T(y1,y2)(N1 ×M N2) = Ty1 N1 ×Tp M Ty2 N2 = {(v1, v2) ∈ Ty1 N1 ×Ty2 N2 : Ty1 f1(v1) = Ty2 f2(v2)}.

Proof. Set N = N1 ×N2 and P = N1 ×M N2. Define maps gi : N → N ×M by:

g1(y1, y2) = ((y1, y2), f1(y1)), g2(y1, y2) = ((y1, y2), f2(y2)).

Let g = gi |P . Then:

(1) g1(N ) and g2(N ) are transverse at g (y1, y2).
(2) g (P ) = g1(N )∩ g2(N ).

The result follows by applying the transverse intersection theorem to the submanifolds g1(N )
and g2(N ) of N ×M . □

1.1. Special Cases and Examples. The fibre product construction unifies several important con-
cepts:

Example 1.2 (Preimage as Fibre Product). Given f : N → M and a point q ∈ M, consider f and
the inclusion i : {q} ,→ M. Their fibre product is:

N ×M {q} = {(y, q) ∈ N × {q} : f (y) = q} ∼= f −1(q).

The transversality condition becomes the requirement that q is a regular value of f .

Example 1.3 (Intersection as Fibre Product). For submanifolds N1, N2 ⊂ M with inclusions ιi :
Ni ,→ M, their fibre product is:

N1 ×M N2 = {(y1, y2) ∈ N1 ×N2 : ι1(y1) = ι2(y2)} ∼= N1 ∩N2.

The transversality condition is exactly

Tp M = Tp N1 +Tp N2, p ∈ N1 ∩N2.

When this condition holds, we say that N1 and N2 intersect transversely and write

N1 ⋔ N2.

Example 1.4 (Product as Fibre Product). When M is a single point, the fibre product reduces to
the ordinary product:

N1 ×{∗} N2
∼= N1 ×N2.

Example 1.5 (Graph of a Map). Given f : N1 → N2, consider the maps f : N1 → N2 and id : N2 →
N2. Their fibre product is the graph of f :

N1 ×N2 N2 = {(y1, y2) ∈ N1 ×N2 : f (y1) = y2} =: Γ f .



Differential Geometry Lecture 11 3

2. THE MORSE-SARD THEOREM

The usefulness of the preimage construction and of the transversality condition lies in the
fact that the hypotheses are, in a very strong sense, "typically" satisfied. The Morse-Sard theo-
rem guarantees that the set of non-regular values has measure zero, so for a fixed smooth map,
almost every value is regular.

Theorem 2.1 (Morse–Sard). Let f ∈ C∞(U ,Rn), where U ⊂ Rm is open. Then the set of critical
values of f has Lebesgue measure 0 in Rn .

Proof. The proof proceeds by induction on m. Assume the theorem is already known for dimen-
sion m −1 whenever m > 1.

For j Ê 1, define
C j = {x ∈U : f ′(x) = 0, f ′′(x) = 0, . . . , f ( j )(x) = 0}.

We first show:

(2.1) L n( f (C j )) = 0 whenever ( j +1)n > m.

It suffices to prove L n( f (K ∩C j )) = 0 for a compact cube K ⊂ U of side length ℓ. Divide K
into km subcubes of side ε = ℓ/k. Let I1, . . . , IN be the subcubes intersecting C j , and choose
xt ∈ It ∩C j .

Taylor’s theorem and xt ∈C j give

| f (x)− f (xt )| É A|x −xt | j+1 É Aε j+1, x ∈ It .

If ( j +1)n > m, then

L n( f (It )) É Anε( j+1)n É Anεm+1 = AnεL m(It ).

Summing over t ,

L n( f (K ∩C j )) É
N∑

t=1
L n( f (It )) É Anε

N∑
t=1

L m(It ) É Anℓmε.

Letting ε→ 0 proves (2.1).
Next, note that the set

E j :=C j \C j+1

is contained in a smooth submanifold of codimension 1 near each of its points. Indeed, at
x0 ∈ E j there exists a component g of f ( j ) with d g (x0) ̸= 0. Thus, E j lies locally in the level
set g−1(g (x0)), which is a smooth (m −1)-dimensional submanifold S.

If f has a critical point on S, then this point is also a critical point of f |S . By the induction
hypothesis (applied to the dimension m−1 domain), the set of critical values of f |S has measure
zero. Since E j is covered by countably many such neighborhoods, we obtain

L n( f (C j \C j+1)) = 0.

Finally, we handle the set C \ C1, where C is the full critical set. Since C is invariant under
precomposition with local diffeomorphisms, we may work in coordinates. At a point of C \ C1

where ∂ f1
∂x1

̸= 0, let ψ be the inverse of the map

x 7→ ( f1(x), x2, . . . , xm).
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Then
f ◦ψ(y) = (y1, g (y)), g : Rm → Rn−1.

A point y = (y1, y ′) is critical for f ◦ψ iff y ′ is a critical point of the map y ′ 7→ g (y1, y ′). For
each fixed y1, the set of critical values of f ◦ψ in the slice {y1}×Rn−1 has measure zero. Since the
critical set in a compact K is compact, the image under f is compact and hence measurable. By
Fubini’s theorem, for each compact K

L n( f (C \C1)∩ f (K )) = 0.

Thus f (C \C1) has measure zero, completing the proof. □

APPENDIX: CATEGORICAL PROPERTIES OF CARTESIAN SQUARES

Proposition 2.2. The following properties hold for transversal cartesian squares:
Consider a commutative diagram of smooth manifolds:

A
f
//

g
��

B
h //

k
��

C

l
��

D m
// E n

// F

Then:

(1) If both squares are transversal cartesian, then the outer rectangle is transversal cartesian.
(2) If the right square and the outer rectangle are transversal cartesian, then the left square is

transversal cartesian.

Proof. By the Pasting Lemma for pullbacks below, the corresponding statements for the under-
lying commutative squares as pullbacks in the category of smooth manifolds hold. It remains to
verify the transversality conditions.

(1) Let a ∈ A, b = f (a), c = h(b), d = g (a), e = m(d) = k(b), f = n(e) = l (c). Given the transver-
sality conditions:

Te E = Im(Tbk)+ Im(Td m)

T f F = Im(Tc l )+ Im(Te n)

For any v ∈ T f F , write v = Tc l (u)+Te n(w) with u ∈ TcC , w ∈ Te E . Then write w = Tbk(x)+
Td m(y) with x ∈ TbB , y ∈ Td D . Thus v = Tc l (u)+Te n(Tbk(x))+Te n(Td m(y)) = Tb(l ◦h)(u′+x)+
Td (n ◦m)(y) for some u′ ∈ TbB , showing v ∈ Im(Ta(l ◦h ◦ f ))+ Im(Td (n ◦m)).

(2) Let e = k(b) = m(d), w ∈ Te E . Then Te n(w) ∈ T f F . By outer rectangle transversality:
Te n(w) = Tc (l )(u)+Td (n◦m)(v) for some u ∈ TcC , v ∈ Td D . Thus Te n(w) = Tc (l )(u)+Te n(Td m(v)).
Since the right square is transversal cartesian, there is x ∈ TbB such that Tbk(x) = w −Td m(v)
and Tbh(x) = u, giving w = Tbk(x)+Td m(v). □

Note: The properties in Proposition 2.2 are standard for cartesian squares (pullbacks) in cat-
egory theory. However, for transversal cartesian squares we must additionally verify that the
transversality condition is preserved under composition and decomposition of squares. The
above proofs establish precisely that the transversality condition holds in these situations.
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Lemma 2.3 (Pasting Lemma for Cartesian Squares). In any category with pullbacks, consider a
commutative diagram:

A
f
//

g
��

B
h //

k
��

C

l
��

D m
// E n

// F

Then:

(1) If both squares are cartesian, then the outer rectangle is cartesian.
(2) If the right square and the outer rectangle are cartesian, then the left square is cartesian.

Proof. We prove these statements using the universal property of pullbacks.
(1) Assume both inner squares are cartesian. We need to show the outer rectangle is cartesian,

i.e., that A is the pullback of D → F and C → F .
Let X be any object with maps α : X → D and γ : X → C such that n ◦m ◦α = l ◦γ. Since the

right square is cartesian, there exists a unique mapβ : X → B such that k◦β= m◦α and h◦β= γ.
Now, since the left square is cartesian, there exists a unique map δ : X → A such that g ◦δ=α

and f ◦δ=β.
This δ satisfies g ◦δ=α and (h ◦ f )◦δ= γ, showing that A is indeed the pullback.
(2) Assume the right square and outer rectangle are cartesian. We need to show the left square

is cartesian.
Let X be any object with maps α : X → D and β : X → B such that m ◦α= k ◦β.
Consider the map l ◦h ◦β : X → F . Note that n ◦m ◦α = n ◦ k ◦β = l ◦h ◦β, where the last

equality follows from commutativity of the right square.
Since the outer rectangle is cartesian, there exists a unique map δ : X → A such that g ◦δ=α

and (h ◦ f )◦δ= h ◦β.
Now, both f ◦δ and β are maps from X to B that satisfy:

• k ◦ ( f ◦δ) = k ◦ f ◦δ= m ◦ g ◦δ= m ◦α= k ◦β
• h ◦ ( f ◦δ) = h ◦ f ◦δ= h ◦β

Since the right square is cartesian, the map (k,h) : B → E ×F C is a monomorphism (in fact,
it’s the pullback of l along n). Therefore, f ◦δ=β.

Thus δ satisfies g ◦δ=α and f ◦δ=β, showing that the left square is cartesian. □
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