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1. WHITNEY EMBEDDING

Before turning to the Whitney Embedding Theorem, let us record a few remarks about Sard’s
theorem in the manifold setting. Last time we proved the Sard theorem for smooth maps defined
on open subsets of Euclidean space. Since all our work from now on takes place on smooth
manifolds, it is useful to clarify what "measure zero" and "almost everywhere" mean in that
context.

Remark 1.1 (Measure zero sets on manifolds). Although we have not formally introduced a mea-
sure on smooth manifolds, the concept of a measure-zero subset makes perfect sense. A subset
A ⊂ M is said to have measure zero if, for every coordinate chart (U ,ϕ), the set

ϕ(A∩U ) ⊂ Rm

has Lebesgue measure zero. Since diffeomorphisms preserve measure-zero sets, this definition
is coordinate-independent. Thus it is meaningful to speak of properties holding "almost every-
where" on a manifold.

Remark 1.2 (Measure zero vs. meagre sets). Measure-zero sets provide one notion of "smallness"
of a subset. A different notion, coming from topology rather than measure theory, is that of a first
category or meagre set: a subset is meagre if it is a countable union of nowhere dense sets (also
known as a set of the first Baire category). Critical value sets in the Morse–Sard theorem are unions
of compact measure-zero sets, hence are nowhere dense and therefore meagre. This notion extends
naturally to smooth manifolds.

In infinite-dimensional settings (for example, Banach or Hilbert manifolds), Lebesgue measure
is no longer available. The corresponding version of Sard’s theorem is the Sard–Smale theorem,
which states that the set of regular values of a smooth Fredholm map is residual (comeagre).

We continue the Whitney Embedding Theorem. This is a fundamental and beautiful result:
although we have defined manifolds abstractly, the manifolds we visualize in our minds are
almost always realized as submanifolds of Euclidean space. Whitney’s theorem guarantees that
our abstract definition does not produce objects that deviate significantly from this intuition.

Recall that in the proof of the partition of unity theorem, we constructed a locally finite col-
lection {Wi }, where each Wi is contained in the domain Ui of some coordinate chart (Ui ,ϕi ). For
each i we also produced a compactly supported smooth function ηi , which is identically 1 on a
neighborhood of Wi and whose support lies inside Ui . If you like Lee’s terminology, the sets Wi

are called regular coordinate balls.
We begin with the following lemma, which will be the starting point for the construction of

embeddings.
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Lemma 1.3. Let K ⊂ M be a compact subset of an m-dimensional manifold M, and let U be a
neighborhood of K . Then there exists a natural number n and a map

g ∈C∞
c (M ,Rn)

such that g is an injective immersion on a neighborhood of K , and g ≡ 0 outside U .

Proof. Choose finitely many sets W j , j = 1, . . . ,k, from the locally finite family constructed above
so that they cover K . For each j , define

g j = (η jϕ j ,η j ) : M → Rm+1.

Each g j is an injective immersion on a neighborhood of W j . Therefore the direct sum

g = g1 ⊕·· ·⊕ gk

is an injective immersion on some neighborhood of K . Here

g = g1 ⊕·· ·⊕ gk

means the map whose value at x is the concatenation of the vectors g1(x), . . . , gk (x). Thus each
g j : M → Rm+1 yields

g : M → Rk(m+1), g (x) = (g1(x), . . . , gk (x)).

Finally, multiply g by a bump function which is identically 1 near K and vanishes outside U .
This yields a compactly supported smooth map into Rn that is an injective immersion near K ,
as required. □

The weakness of this argument is that it gives no control over the target dimension n. When
M is compact, this is harmless: we only need a single embedding into some Rn . However, when
M is noncompact, one typically exhausts M by larger and larger compact subsets, and the above
construction forces us to choose larger values of n at each stage. If we proceed naïvely, we are
eventually led to embeddings into an infinite-dimensional Euclidean space–an outcome that is
neither geometric nor desirable.

We now turn to the question of dimension reduction, which overcomes this issue and leads to
the finite-dimensional Whitney Embedding Theorem.

We first introduce a useful family of linear projections. For a = (a1, . . . , an−1) ∈ Rn−1 we denote
by

πa : Rn → Rn−1

the projection along the vector (a,1) onto the hyperplane {xn = 0}, i.e.

πa(x1, . . . , xn−1, xn) = (
x1 −a1xn , . . . , xn−1 −an−1xn)

.

We now prove that, for a generic choice of a, such a projection preserves immersions on a
fixed compact set.

Lemma 1.4. Let M be an m-dimensional manifold, K ⊂ M a compact set, and f ∈ C∞(M ,Rn)
an immersion on a neighborhood of K . Assume n > 2m. Then there is a closed measure-zero set
E ⊂ Rn−1 such that, for all a ∈ Rn−1 \ E, the map πa ◦ f is an immersion on K .

Proof. Since measure zero is preserved under countable unions and this is a local statement,
we may assume that K is contained in a single coordinate chart and, furthermore, that M is an
open subset of Rm .
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Let E ⊂ Rn−1 be the set of all parameters a for which πa ◦ f fails to be an immersion at some
point of K . Concretely, a ∈ E if and only if there exist x ∈ K and λ ∈ Rm with |λ| = 1 such that

m∑
k=1

λk

( ∂ f j

∂xk
(x)−a j

∂ fn

∂xk
(x)

)
= 0, j = 1, . . . ,n −1.

These equations define a closed subset of

K ×Sm−1 ×Rn−1,

and the projection to the a-factor is proper (since K is compact), hence E is closed.
Set

µ=
m∑

k=1
λk

∂ fn

∂xk
(x),

so that the above equations can be rewritten as
m∑

k=1
λk

∂ f j

∂xk
(x) =µa j , j = 1, . . . ,n −1,

and, with an := 1,
m∑

k=1
λk

∂ f j

∂xk
(x) =µa j , j = 1, . . . ,n.

This means that the vector (a,1) ∈ Rn is tangent to the immersed submanifold f (M) at the point
f (x).

Since f is an immersion, the vector

v =
m∑

k=1
λk

∂ f

∂xk
(x)

is nonzero, hence µ ̸= 0 and (a,1) lies in the range of the smooth map

F : Rm ×K → Rn , F (λ, x) =
m∑

k=1
λk

∂ f

∂xk
(x).

The domain of F has dimension 2m < n, so by a simple special case of the Morse-Sard theorem
the image F (Rm ×K ) has measure zero in Rn . For each fixed µ ̸= 0, the intersection of this image
with the affine hyperplane

Hµ = {(a,µ) ∈ Rn : a ∈ Rn−1}

also has measure zero (by Fubini’s theorem and homogeneity). Projecting Hµ∩ imF onto the
first n −1 coordinates yields a measure-zero subset of Rn−1.

Since, for a ∈ E , the direction (a,1) lies in imF with some µ ̸= 0, we conclude that E is a closed
measure-zero subset of Rn−1. □

We next analyze when injectivity is preserved under projection.

Lemma 1.5. Let M be an m-dimensional manifold, K ⊂ M a compact set, and f ∈ C∞(M ,Rn)
an injective immersion on a neighborhood of K . Assume n > 2m +1. Then there exists a closed
measure-zero set F ⊂ Rn−1 such that, for all a ∈ Rn−1 \ F , the map πa ◦ f is an injective immersion
on a neighborhood of K .

Proof. By Lemma 1.4, there is a closed measure-zero set E ⊂ Rn−1 such that πa ◦ f is an immer-
sion near K for all a ∉ E . It remains to rule out failure of injectivity.
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Let E ′ ⊂ Rn−1 be the set of parameters a such that πa ◦ f is not injective on K . First observe
that E ∪E ′ is closed. Indeed, suppose a j ∈ E ′ and a j → a. For each j there exist x ′

j , x ′′
j ∈ K ,

x ′
j ̸= x ′′

j , with

πa j f (x ′
j ) =πa j f (x ′′

j ).

Passing to a subsequence, we may assume x ′
j → x ′ and x ′′

j → x ′′ for some x ′, x ′′ ∈ K . If a ∉ E ,

then for j sufficiently large, πa j ◦ f is an injective immersion on a fixed neighborhood of x ′, so
in particular x ′ ̸= x ′′ and

πa f (x ′) =πa f (x ′′),

showing that a ∈ E ′. Thus E ∪E ′ is closed.
Now describe E ′ more explicitly. The condition a ∈ E ′ means that there exist x ′, x ′′ ∈ K , x ′ ̸= x ′′,

such that
f j (x ′)−a j fn(x ′) = f j (x ′′)−a j fn(x ′′), j = 1, . . . ,n −1.

Setting an = 1 and
µ= fn(x ′)− fn(x ′′),

we can rewrite this as
f (x ′)− f (x ′′) =µ(a1, . . . , an−1,1).

Since f is injective on K , we have f (x ′) ̸= f (x ′′) and therefore µ ̸= 0. Thus the vector (a,1) lies in
the range of the smooth map

G : R×K ×K → Rn , G(t , x ′, x ′′) = t
(

f (x ′)− f (x ′′)
)
.

The domain of G has dimension 1+2m < n by assumption, so the image G(R×K ×K ) has mea-
sure zero in Rn . As before, by homogeneity and Fubini’s theorem, its intersection with each
hyperplane {(a,µ) : a ∈ Rn−1}, µ ̸= 0, has measure zero, and hence the corresponding sets of a in
Rn−1 also have measure zero.

It follows that E ′ is a measure-zero subset of Rn−1, and hence so is F := E ∪E ′, which is closed.
For a ∉ F , the mapπa◦ f is both an immersion and injective on a neighborhood of K , as claimed.

□

In these two lemmas we have successively excluded two types of “bad” projection directions:
in Lemma 1.4 we avoided projecting along directions tangent to f (M), and in Lemma 1.5 we
further avoided directions parallel to chords joining distinct points of f (K ). The sets of forbid-
den directions are controlled by 2m and 2m + 1 parameters, respectively, which explains the
dimension assumptions n > 2m and n > 2m +1.
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