Lecture 13

November 25, 2025

1. WHITNEY EMBEDDING
Last week, we prove

Lemma 1.1. Let K € M be a compact subset of an m-dimensional manifold M, and let U be a
neighborhood of K. Then there exists a natural number n and a map

geCX(M,R")
such that g is an injective immersion on a neighborhood of K, and g = 0 outside U.

and

Lemma 1.2. Let M be an m-dimensional manifold, K ¢ M a compact set, and f € C*°(M,R")
an injective immersion on a neighborhood of K. Assume n > 2m+ 1. Then there exists a closed
measure-zero set F < R such that, for all a € R\ F, the map n,o f is an injective immersion
on a neighborhood of K.

Theorem 1.3 (Approximation by proper embeddings). Let M be an m-dimensional manifold
and let

f€C®(M,R")
be a proper map, where n = 2m+ 1. Then for every positive continuous function € : M — (0,00)
there exists a proper embedding

g€ C®(M,R"
such that

lg(x) — f(x)| <e(x), X € M.

Proof. First replace € by
¢'(x) := min{l,e(x)},
and relabel €' = €. Then the function
M —R, x—|f(x)|-¢e(x)
is proper: indeed, for any c € R we have
x:lf@-ex)<cic{x:|f(x)<c+1},

and the latter set is compact because f is proper and ¢ < 1. Consequently, if g satisfies [g— f| < ¢
on M, then

g = f()]-1gx) = f(I=1f(x)]-ex),
so the properness of x — | f(x)| — €(x) implies that g is also proper. Thus it suffices to construct

an embedding g with |g— f| <e.
1
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Let
KicKc---cM

be a compact exhaustion of M. We construct inductively a sequence

g EC®MRY, j=0,12,...,

such that:
M g=1
(2) forall j =1,
£(x)
|gj(X)_gj—1(X)|S7, X € M,

(3) gj is an injective immersion on a neighborhood of Kj;
(4) gij=gj-10nKj_;.

Assume g;_; has been constructed for some j > 1. By Lemma 1.1, there exist an integer ¢ and
a map
he C®(M,R)
such that g;_; ® h is an injective immersion on a neighborhood of K. Moreover, we may choose
h so that h =0 near K;_;: for instance, apply Lemma 1.1 with

K=Kj\Vj_;, U=M\Kj,

where V;_ is a neighborhood of K;_; on which g;_; is already an injective immersion.
Now repeatedly apply Lemma 1.2 to the map

M—R"™  x—(gj_1(x),h(x),
to obtain a linear map T : R’ — R” with arbitrarily small operator norm such that
gj:=8j-1+Toh

is an injective immersion on a neighborhood of K;. Since h =0 near K;_;, we have g; = g;—1 on
K;_1. By choosing || T| sufficiently small, we can also ensure that

£(x)

Igj(x)—gj_l(x)|s—2]. , X€M.
This completes the inductive step.
By construction,
o) 00 E(X)
Y Igix) —gia)I< ) ——=¢W),
j=1 =1 %

so the series converges pointwise, and in fact stabilizes on each compact set: for any fixed Ky,
all maps g; with j = N coincide on Ky because of property (4). We can therefore define

g(x):= lim g;(x),
j—o0
and obtain a smooth map g € C*°(M,R") with
lg(x) — f(X)| <e(x), x€ M.

Moreover, on each K; we have g = g;, and g; is an injective immersion near Kj, hence g is an
injective immersion on all of M.
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Finally, since g is a proper injective immersion, the following lemma shows that g is an em-
bedding. U

Lemma 1.4. Let X and Y be Hausdorff spaces, with Y locally compact, and let f : X — Y be
proper (i.e. f~1(K) is compact for every compact K c Y). Then f is a closed map: the image of
every closed subset of X is closed in Y .

Proof. Let C c X be closed, and let y € f(C). We must show y € f(C).

Since Y is locally compact and Hausdorff, there exists a compact neighborhood K < Y of y.
Then

flOnK=f(Cnf1K).

The set Cn f~1(K) is closed in the compact set f~!(K), hence compact. Thus f(C) N K is the
continuous image of a compact set and therefore compact, in particular closed in K.

Because y € f(C), we also have y € f(C)nK. But f(C)nK is closed in K and y € K, so y €
f(C)nK. Hence y € f(C).

We have shown that every point in f(C) lies in f(C), so f(C) is closed in Y. Thus f is a closed
map. 0

Finally, let us explain why proper maps are abundant, so the approximation theorem above
always applies. In Lecture 5, when we constructed partitions of unity, we also proved the exis-
tence of an exhaustion function on any smooth manifold M. Recall that an exhaustion function
is a continuous map

p:M—R
such that every sublevel set
¢~ (o0, c])
is compact for all ¢ € R. In particular, every exhaustion function is a proper map.
Therefore, given any n = 1, we may consider the map

x— (¢(x),0,...,0) e R",

which is again proper. Thus proper maps M — R" always exist, and Theorem 1.3 shows that we
can approximate any such proper map by a proper embedding arbitrarily well. This guarantees
the existence of smooth embeddings of M into R” for all sufficiently large n.

We now describe the normal bundle of an embedded submanifold and show that it is an em-
bedded submanifold of the tangent bundle of R”.

Let M c R” be an embedded m-dimensional submanifold. For each x € R”, the tangent space
T,R" is canonically identified with R”, and hence inherits the standard Euclidean inner product
().

For x € M, define the normal space
N.M = {ve T,\R":{(v,w) =0forall we T,M}.
The normal bundle of M is then defined as
NM = {(x,v) e TR"=ZR"xR" | xe M, ve N, M}.
There is a natural projection
anym:NM— M, aTym(x,v) =X,

which is just the restriction of the standard bundle projection 7 : TR — R".
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Proposition 1.5. The normal bundle N M is an embedded submanifold of TR".

Proof. Let pp € M and choose a coordinate chart
WU, =(x'...,x")
on R” such that py € U and

MnU={peU:x™"(p)=---=x"(p) =0}
On U the coordinate vector fields 3
axt’ axn’

form a basis of T,R" for each p e U.
Let (u',..., u™) be the standard coordinates on R”. Then on U we can write

0 ou' 0
ox) = ox) oul’
Define a smooth map
®:UxR"— @U) xR"
by
O(p,v) = (x" ()., X (D), (0, 320, (0, 320)).
In product coordinates (p, v) the differential has block form
A 0
pog=(* 2
where A = (axi/auf),-,]- is the Jacobian of u — x(u). Since ¢ is a local diffeomorphism, A is
invertible, hence D®, ;) is invertible. So @ is a local diffeomorphism.
We claim that ® is injective. If ®(p, v) = ®(p’, V'), then

@ (p),o, (P = (&' (P, ., X" (D),
so p = p’ by injectivity of ¢. For this p,

2y =

0 .
(v)axi )W>) l:1,...,n,

so v = v’ because the 4/dx’ form a basis of TpR". Thus ® is injective and defines a smooth
coordinate chart on U x R".
Now (p,v) € NM iff:

M = =x"(p)=0, () =0G=1,...,m).
Hence, writing
@(p,v) = (x},...,x" wh,..., w"), wi:(v,aixix
we have
(pV)ENM = x"=...=2x"=0, w'=---=w™=0.
Thus
O(NMn (U =xR") ={(x,w): x" ! =-..=x"=0, w'=...0w" =0},

a linear subspace of ¢ (U) x R", hence an embedded submanifold.
Therefore NM is an embedded submanifold of TR". O
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Tubular Neighborhoods. Let M c R” be an embedded m-dimensional submanifold. Its nor-
mal bundle
NM={x,v)eR"xR":xe M, v L T,M}

is an embedded submanifold of TR"” = R" x R". Define the (normal) exponential map
E:NM — R", E(x,v)=x+ 0.

This is smooth because it is the restriction of the addition map on R” x R”.

Definition 1.6. Atubular neighborhood of M is an open set U c R" for which there exists an open
subset
V={x,v)e NM:|v|<b6(x)}

with 6 : M — (0,00) continuous, such that E|y : V — U is a diffeomorphism.

Theorem 1.7 (Tubular Neighborhood Theorem). Every embedded submanifold M c R" admits
a tubular neighborhood.

Proof. Let My = {(x,0) : x € M} be the zero section of NM. We first show that E is a local diffeo-
morphism near M.
Fix x € M. On M, the restriction

Elpmy : Mo — M, (x,0)— x
is a diffeomorphism, so its differential
dE 0 : TxoyMo — TeM
is an isomorphism. On the other hand, the restriction of E to the fiber N, M is the affine map
N,.M — R", w— x+w,
whose differential at w = 0 is the identity on Ny M. Thus
AE (0 : Tix0)(NxM) — N M

is also an isomorphism.
Since E restricts to a diffeomorphism My — M along the zero section My = {(x,0) : x € M}, its
differential
dE(x,()) . T(xy())M() i TxM
is an isomorphism. Similarly, the restriction of E to the fiber N, M is the affine map w — x+ w,
whose differential at 0 is the identity on N, M. Hence
dE(x0) : Tix,0)(NxM) — N M

is also an isomorphism.
Now set
V1 = T(xy())M(), VZ = T(xy()) (NxM) C T(xy())NM.
Since Mj and the fiber directions meet transversely in N M at (x,0), we have
VinV, ={0}, dimV; =dim T, M = m, dimV, =dim N, M =n—m.
Because dim T(y,0)NM = n = dim V; + dim V», it follows that
T(x,())NM =Vie V.
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Choose a basis of T{x,0NM consisting of a basis of V; followed by a basis of V», and choose
a basis of TR consisting of a basis of T M followed by a basis of N, M. With respect to these
adapted bases, the matrix of
dE(x’o) : T(x,())NM—> Tan

has block diagonal form

A 0
dE 0 = ( ),

0 B
where
A= dE(x,0)|V1 . Vl - TxM, B= dE(x,0)|V2 . Vg - NxM.
Both A and B are linear isomorphisms by the discussion above, hence the entire block diagonal
matrix is invertible. Thus d E(y o) is a linear isomorphism.
By the inverse function theorem, E is a local diffeomorphism at (x, 0).
Since N M is a vector bundle, we have a direct sum decomposition

Tix,00 NM = Tix,00Mo ® Tx,0)(Nx M),
and similarly
T,R" = T,M & N, M.
By the preceding discussion, d E(, o) maps each summand isomorphically onto the correspond-
ing summand, hence is an isomorphism T{y,0)NM — T,R". By the inverse function theorem, E

is a local diffeomorphism at (x,0).
Therefore, for each x € M there exists 6 > 0 such that

E:Vs(x) = E(Vs(x)
is a diffeomorphism, where we may take
Vs(x):={(x/,v)e NM: |x—x'| <6, |V| <6}
For each x € M, define
p(x) :=sup{d € (0,1] : Ely;y is a diffeomorphism onto its image}.

The local argument above shows p(x) > 0 for all x. To see that p is 1-Lipschitz, fix x, x’ € M and
assume |x—x'| < p(x). Setd := p(x) —|x—x'| > 0. Then V5(x') € V() (x), so E is a diffeomorphism
on Vs(x'), hence p(x) = 6§ and

p(x)—p(x") <|x—x'|.
If |x — x'| = p(x) this inequality is trivial. Exchanging x and x’ gives p(x') — p(x) < |x— x'|, so

lp(x) —p(x)] < |x—x'|.

Now set
Vi={(x,v) e NM:|v| < 3p(x)}.
We claim that E is injective on V. Suppose (x, v), (x',v') € V satisfy E(x,v) = E(x', V'), i.e. x+ v =
x'+v'. Then
lx—x'|=|lv=-V|<|v|+|V|< %p(x)—i—%p(x’).

Without loss of generality assume p(x') < p(x). Then

lx - x| < p(x),
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so both (x,v) and (x/,?') lie in Vo (x). By definition of p(x), E is injective on V) (x), hence
(x,v) = (¥, V). Thus E is injective on V.
Finally, let U := E(V) c R". Since E is a local diffeomorphism and V is open, U is open and

Eh/ILI—*L]

is a bijective local diffeomorphism, hence a global diffeomorphism. By construction, V is of the
form {(x, v): |v| <6 (x)} with 6 (x) = %p(x), so U is a tubular neighborhood of M. O

Proposition 1.8 (Existence of a smooth retraction). IfU is any tubular neighborhood of M, then
there exists a smooth map
r-U—-M

which is a retraction (r |y = id ;) and a smooth submersion.

Proof. Write U = E(V) with

V={x,v)e NM:|v|<dx)},
and E|y : V — U a diffeomorphism. Let myy: NM — M be the bundle projection (x, v) — x.
Define

ri=nymo (Ely) 1 :U— M.
Then r is smooth and r(x) = x for all x € M, so r is a retraction. Moreover, 7t ) is a submersion,
and (E|y) lisa diffeomorphism, so r is a submersion as well. O
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