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1. WHITNEY EMBEDDING

Last week, we prove

Lemma 1.1. Let K ⊂ M be a compact subset of an m-dimensional manifold M, and let U be a
neighborhood of K . Then there exists a natural number n and a map

g ∈C∞
c (M ,Rn)

such that g is an injective immersion on a neighborhood of K , and g ≡ 0 outside U .

and

Lemma 1.2. Let M be an m-dimensional manifold, K ⊂ M a compact set, and f ∈ C∞(M ,Rn)
an injective immersion on a neighborhood of K . Assume n > 2m +1. Then there exists a closed
measure-zero set F ⊂ Rn−1 such that, for all a ∈ Rn−1 \ F , the map πa ◦ f is an injective immersion
on a neighborhood of K .

Theorem 1.3 (Approximation by proper embeddings). Let M be an m-dimensional manifold
and let

f ∈C∞(M ,Rn)

be a proper map, where n Ê 2m +1. Then for every positive continuous function ε : M → (0,∞)
there exists a proper embedding

g ∈C∞(M ,Rn)

such that
|g (x)− f (x)| É ε(x), x ∈ M .

Proof. First replace ε by
ε′(x) := min{1,ε(x)},

and relabel ε′ = ε. Then the function

M → R, x 7→ | f (x)|−ε(x)

is proper: indeed, for any c ∈ R we have

{x : | f (x)|−ε(x) É c} ⊂ {x : | f (x)| É c +1},

and the latter set is compact because f is proper and εÉ 1. Consequently, if g satisfies |g − f | É ε
on M , then

|g (x)| Ê | f (x)|− |g (x)− f (x)| Ê | f (x)|−ε(x),

so the properness of x 7→ | f (x)|−ε(x) implies that g is also proper. Thus it suffices to construct
an embedding g with |g − f | É ε.
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Let
K1 ⊂ K2 ⊂ ·· · ⊂ M

be a compact exhaustion of M . We construct inductively a sequence

g j ∈C∞(M ,Rn), j = 0,1,2, . . . ,

such that:

(1) g0 = f ;
(2) for all j Ê 1,

|g j (x)− g j−1(x)| É ε(x)

2 j
, x ∈ M ;

(3) g j is an injective immersion on a neighborhood of K j ;
(4) g j = g j−1 on K j−1.

Assume g j−1 has been constructed for some j Ê 1. By Lemma 1.1, there exist an integer ℓ and
a map

h ∈C∞
c (M ,Rℓ)

such that g j−1⊕h is an injective immersion on a neighborhood of K j . Moreover, we may choose
h so that h ≡ 0 near K j−1: for instance, apply Lemma 1.1 with

K = K j \V j−1, U = M \ K j−1,

where V j−1 is a neighborhood of K j−1 on which g j−1 is already an injective immersion.
Now repeatedly apply Lemma 1.2 to the map

M → Rn+ℓ, x 7→ (g j−1(x),h(x)),

to obtain a linear map T : Rℓ→ Rn with arbitrarily small operator norm such that

g j := g j−1 +T ◦h

is an injective immersion on a neighborhood of K j . Since h ≡ 0 near K j−1, we have g j = g j−1 on
K j−1. By choosing ∥T ∥ sufficiently small, we can also ensure that

|g j (x)− g j−1(x)| É ε(x)

2 j
, x ∈ M .

This completes the inductive step.
By construction,

∞∑
j=1

|g j (x)− g j−1(x)| É
∞∑

j=1

ε(x)

2 j
= ε(x),

so the series converges pointwise, and in fact stabilizes on each compact set: for any fixed KN ,
all maps g j with j Ê N coincide on KN because of property (4). We can therefore define

g (x) := lim
j→∞

g j (x),

and obtain a smooth map g ∈C∞(M ,Rn) with

|g (x)− f (x)| É ε(x), x ∈ M .

Moreover, on each K j we have g = g j , and g j is an injective immersion near K j , hence g is an
injective immersion on all of M .
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Finally, since g is a proper injective immersion, the following lemma shows that g is an em-
bedding. □

Lemma 1.4. Let X and Y be Hausdorff spaces, with Y locally compact, and let f : X → Y be
proper (i.e. f −1(K ) is compact for every compact K ⊂ Y ). Then f is a closed map: the image of
every closed subset of X is closed in Y .

Proof. Let C ⊂ X be closed, and let y ∈ f (C ). We must show y ∈ f (C ).
Since Y is locally compact and Hausdorff, there exists a compact neighborhood K ⊂ Y of y .

Then
f (C )∩K = f

(
C ∩ f −1(K )

)
.

The set C ∩ f −1(K ) is closed in the compact set f −1(K ), hence compact. Thus f (C )∩K is the
continuous image of a compact set and therefore compact, in particular closed in K .

Because y ∈ f (C ), we also have y ∈ f (C )∩K . But f (C )∩K is closed in K and y ∈ K , so y ∈
f (C )∩K . Hence y ∈ f (C ).

We have shown that every point in f (C ) lies in f (C ), so f (C ) is closed in Y . Thus f is a closed
map. □

Finally, let us explain why proper maps are abundant, so the approximation theorem above
always applies. In Lecture 5, when we constructed partitions of unity, we also proved the exis-
tence of an exhaustion function on any smooth manifold M . Recall that an exhaustion function
is a continuous map

ϕ : M → R

such that every sublevel set
ϕ−1((−∞,c])

is compact for all c ∈ R. In particular, every exhaustion function is a proper map.
Therefore, given any n Ê 1, we may consider the map

x 7−→ (ϕ(x),0, . . . ,0) ∈ Rn ,

which is again proper. Thus proper maps M → Rn always exist, and Theorem 1.3 shows that we
can approximate any such proper map by a proper embedding arbitrarily well. This guarantees
the existence of smooth embeddings of M into Rn for all sufficiently large n.

We now describe the normal bundle of an embedded submanifold and show that it is an em-
bedded submanifold of the tangent bundle of Rn .

Let M ⊂ Rn be an embedded m-dimensional submanifold. For each x ∈ Rn , the tangent space
Tx Rn is canonically identified with Rn , and hence inherits the standard Euclidean inner product
〈·, ·〉.

For x ∈ M , define the normal space

Nx M := {v ∈ Tx Rn : 〈v, w〉 = 0 for all w ∈ Tx M }.

The normal bundle of M is then defined as

N M := {(x, v) ∈ T Rn ∼= Rn ×Rn | x ∈ M , v ∈ Nx M }.

There is a natural projection

πN M : N M −→ M , πN M (x, v) = x,

which is just the restriction of the standard bundle projection π : T Rn → Rn .
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Proposition 1.5. The normal bundle N M is an embedded submanifold of T Rn .

Proof. Let p0 ∈ M and choose a coordinate chart

(U ,ϕ= (x1, . . . , xn))

on Rn such that p0 ∈U and

M ∩U = {p ∈U : xm+1(p) = ·· · = xn(p) = 0}.

On U the coordinate vector fields
∂

∂x1
, . . . ,

∂

∂xn
,

form a basis of Tp Rn for each p ∈U .
Let (u1, . . . ,un) be the standard coordinates on Rn . Then on U we can write

∂

∂x j
=

n∑
i=1

∂ui

∂x j

∂

∂ui
.

Define a smooth map
Φ : U ×Rn →ϕ(U )×Rn

by
Φ(p, v) = (

x1(p), . . . , xn(p),〈v, ∂
∂x1 〉, . . . ,〈v, ∂

∂xn 〉
)
.

In product coordinates (p, v) the differential has block form

DΦ(p,v) =
(

A 0
∗ A−1

)
,

where A = (∂xi /∂u j )i , j is the Jacobian of u 7→ x(u). Since ϕ is a local diffeomorphism, A is
invertible, hence DΦ(p,v) is invertible. SoΦ is a local diffeomorphism.

We claim thatΦ is injective. IfΦ(p, v) =Φ(p ′, v ′), then

(x1(p), . . . , xn(p)) = (x1(p ′), . . . , xn(p ′)),

so p = p ′ by injectivity of ϕ. For this p,

〈v, ∂
∂xi 〉 = 〈v ′, ∂

∂xi 〉, i = 1, . . . ,n,

so v = v ′ because the ∂/∂xi form a basis of Tp Rn . Thus Φ is injective and defines a smooth
coordinate chart on U ×Rn .

Now (p, v) ∈ N M iff:

xm+1(p) = ·· · = xn(p) = 0, 〈v, ∂
∂xi 〉 = 0 (i = 1, . . . ,m).

Hence, writing
Φ(p, v) = (x1, . . . , xn , w 1, . . . , w n), w i = 〈v, ∂

∂xi 〉,
we have

(p, v) ∈ N M ⇐⇒ xm+1 = ·· · = xn = 0, w1 = ·· · = w m = 0.

Thus
Φ

(
N M ∩ (U ×Rn)

)= {(x, w) : xm+1 = ·· · = xn = 0, w 1 = . . . w m = 0},

a linear subspace of ϕ(U )×Rn , hence an embedded submanifold.
Therefore N M is an embedded submanifold of T Rn . □
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Tubular Neighborhoods. Let M ⊂ Rn be an embedded m–dimensional submanifold. Its nor-
mal bundle

N M = {(x, v) ∈ Rn ×Rn : x ∈ M , v ⊥ Tx M }

is an embedded submanifold of T Rn ∼= Rn ×Rn . Define the (normal) exponential map

E : N M → Rn , E(x, v) = x + v.

This is smooth because it is the restriction of the addition map on Rn ×Rn .

Definition 1.6. A tubular neighborhood of M is an open set U ⊂ Rn for which there exists an open
subset

V = {(x, v) ∈ N M : |v | < δ(x)}

with δ : M → (0,∞) continuous, such that E |V : V →U is a diffeomorphism.

Theorem 1.7 (Tubular Neighborhood Theorem). Every embedded submanifold M ⊂ Rn admits
a tubular neighborhood.

Proof. Let M0 = {(x,0) : x ∈ M } be the zero section of N M . We first show that E is a local diffeo-
morphism near M0.

Fix x ∈ M . On M0, the restriction

E |M0 : M0 → M , (x,0) 7→ x

is a diffeomorphism, so its differential

dE(x,0) : T(x,0)M0 → Tx M

is an isomorphism. On the other hand, the restriction of E to the fiber Nx M is the affine map

Nx M → Rn , w 7→ x +w,

whose differential at w = 0 is the identity on Nx M . Thus

dE(x,0) : T(x,0)(Nx M) → Nx M

is also an isomorphism.
Since E restricts to a diffeomorphism M0 → M along the zero section M0 = {(x,0) : x ∈ M }, its

differential
dE(x,0) : T(x,0)M0 −→ Tx M

is an isomorphism. Similarly, the restriction of E to the fiber Nx M is the affine map w 7→ x +w ,
whose differential at 0 is the identity on Nx M . Hence

dE(x,0) : T(x,0)(Nx M) −→ Nx M

is also an isomorphism.
Now set

V1 := T(x,0)M0, V2 := T(x,0)(Nx M) ⊂ T(x,0)N M .

Since M0 and the fiber directions meet transversely in N M at (x,0), we have

V1 ∩V2 = {0}, dimV1 = dimTx M = m, dimV2 = dim Nx M = n −m.

Because dimT(x,0)N M = n = dimV1 +dimV2, it follows that

T(x,0)N M =V1 ⊕V2.
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Choose a basis of T(x,0)N M consisting of a basis of V1 followed by a basis of V2, and choose
a basis of Tx Rn consisting of a basis of Tx M followed by a basis of Nx M . With respect to these
adapted bases, the matrix of

dE(x,0) : T(x,0)N M −→ Tx Rn

has block diagonal form

dE(x,0) =
(

A 0
0 B

)
,

where
A = dE(x,0)|V1 : V1 → Tx M , B = dE(x,0)|V2 : V2 → Nx M .

Both A and B are linear isomorphisms by the discussion above, hence the entire block diagonal
matrix is invertible. Thus dE(x,0) is a linear isomorphism.

By the inverse function theorem, E is a local diffeomorphism at (x,0).
Since N M is a vector bundle, we have a direct sum decomposition

T(x,0)N M = T(x,0)M0 ⊕T(x,0)(Nx M),

and similarly
Tx Rn = Tx M ⊕Nx M .

By the preceding discussion, dE(x,0) maps each summand isomorphically onto the correspond-
ing summand, hence is an isomorphism T(x,0)N M → Tx Rn . By the inverse function theorem, E
is a local diffeomorphism at (x,0).

Therefore, for each x ∈ M there exists δ> 0 such that

E : Vδ(x) → E
(
Vδ(x)

)
is a diffeomorphism, where we may take

Vδ(x) := {(x ′, v ′) ∈ N M : |x −x ′| < δ, |v ′| < δ}.

For each x ∈ M , define

ρ(x) := sup
{
δ ∈ (0,1] : E |Vδ(x) is a diffeomorphism onto its image

}
.

The local argument above shows ρ(x) > 0 for all x. To see that ρ is 1–Lipschitz, fix x, x ′ ∈ M and
assume |x−x ′| < ρ(x). Set δ := ρ(x)−|x−x ′| > 0. Then Vδ(x ′) ⊂Vρ(x)(x), so E is a diffeomorphism
on Vδ(x ′), hence ρ(x ′) Ê δ and

ρ(x)−ρ(x ′) É |x −x ′|.
If |x −x ′| Ê ρ(x) this inequality is trivial. Exchanging x and x ′ gives ρ(x ′)−ρ(x) É |x −x ′|, so

|ρ(x)−ρ(x ′)| É |x − x ′|.
Now set

V := {(x, v) ∈ N M : |v | < 1
2ρ(x)}.

We claim that E is injective on V . Suppose (x, v), (x ′, v ′) ∈V satisfy E(x, v) = E(x ′, v ′), i.e. x + v =
x ′+ v ′. Then

|x −x ′| = |v − v ′| É |v |+ |v ′| < 1
2ρ(x)+ 1

2ρ(x ′).

Without loss of generality assume ρ(x ′) É ρ(x). Then

|x −x ′| < ρ(x),
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so both (x, v) and (x ′, v ′) lie in Vρ(x)(x). By definition of ρ(x), E is injective on Vρ(x)(x), hence
(x, v) = (x ′, v ′). Thus E is injective on V .

Finally, let U := E(V ) ⊂ Rn . Since E is a local diffeomorphism and V is open, U is open and

E |V : V →U

is a bijective local diffeomorphism, hence a global diffeomorphism. By construction, V is of the
form {(x, v) : |v | < δ(x)} with δ(x) = 1

2ρ(x), so U is a tubular neighborhood of M . □

Proposition 1.8 (Existence of a smooth retraction). If U is any tubular neighborhood of M, then
there exists a smooth map

r : U → M

which is a retraction (r |M = idM ) and a smooth submersion.

Proof. Write U = E(V ) with
V = {(x, v) ∈ N M : |v | < δ(x)},

and E |V : V → U a diffeomorphism. Let πN M : N M → M be the bundle projection (x, v) 7→ x.
Define

r :=πN M ◦ (E |V )−1 : U → M .

Then r is smooth and r (x) = x for all x ∈ M , so r is a retraction. Moreover, πN M is a submersion,
and (E |V )−1 is a diffeomorphism, so r is a submersion as well. □
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