Lecture 2

November 21, 2025

1. CONNECTIVITY

Let us recall some basic terminology regarding connectedness. There are essentially two fun-
damental ways to characterize when a topological space is connected.

Definition via Clopen Sets. The more basic definition states that a topological space X is con-
nected if the only subsets that are both open and closed (clopen) are @ and X itself.

Why is this definition meaningful? Suppose there exists a non-trivial clopen subset A c X
with A # @ and A # X. Then its complement X \ A is also clopen. Consequently, the topology
of X decomposes into disjoint unions of open sets from A and X \ A, indicating that X can be
separated into two independent components. Thus, connectedness precisely prohibits such a
separation.

Path Connectedness. In practice, a more operational notion is the stronger concept of path
connectedness. A space X is path connected if for any two points p, g € X, there exists a contin-
uous path y:[0,1] — X such that y(0) = p and y(1) = g.

It is straightforward to verify that path connectedness implies connectedness. However, the
converse is generally false. A classic counterexample is the topologist’s sine curve. Notably, for
topological manifolds, these two notions coincide.

Theorem 1.1. Let M" be a topological manifold. Then

M is connected <= M is path connected.

Proof. («<=) This direction is straightforward and will be left as an exercise.

(=) We now prove the non-trivial direction. Assume M is connected and we want to show it
is path connected. To understand the proof strategy, it is helpful to first consider the case when
M is an open subset of R", a proof that may be familiar from analysis or topology courses.

Case: M c R” open. Fix a base point p € M. Define the set

U ={g € M : 3 a continuous path from p to g within M3}.

Our goal is to show that U = M.

First, we show U is open. Take any q € U. Since M is open, there exists an open ball B.(gq) c
M. For any r € B¢(q), we can connect g to r by a straight line segment (which is continuous)
contained entirely in B.(g) € M. By composing this with the path from p to g, we obtain a path
from p to r. Hence, B.(q) < U, proving U is open.

Next, we show U is closed in M. Suppose g € M \ U. Again, by openness of M, there exists an

open ball B.(q) € M. We claim B.(q) € M\ U. If not, there would exist some r € Bc(q) N U. But
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then we could connect p to r (since r € U) and then connect r to g by a straight line segment
within B(q), contradicting q ¢ U. Thus, M \ U is open, so U is closed.

Since M is connected and U is non-empty (as p € U), we conclude U = M.

General case: M is a topological manifold. The proof follows the same strategy. Fix p € M
and define U as above.

To show U is open: For g € U, take a coordinate chart (V,¢) with g € V and ¢(V) homeo-
morphic to an open subset of R”. Since ¢ (V) contains an open ball around ¢(g), we can find a
neighborhood W < V of g that is homeomorphic to an open ball. Any point in W can be con-
nected to g by a path in W (via the straight line in coordinates), hence can be connected to p by
extending the existing path. Thus, W c U.

To show U is closed: Suppose g € M\ U. Take a coordinate chart (V,¢) around g with ¢(V)
homeomorphic to an open ball. If there were some r € V N U, we could connect p to r and then
r to g within V (using the coordinate representation), contradicting g ¢ U. Hence, V < M\ U,
so M\ U is open.

By connectedness of M and non-emptiness of U, we conclude U = M. 0

2. LOCAL COMPACTNESS AND PARACOMPACTNESS

We now turn to slightly more technical aspects of topological manifolds. We will see how the
second countability condition translates into more practical tools for working with manifolds.

2.0. Local Compactness.

Proposition 2.1. Let M be a topological manifold. Then for every point p € M and every open
neighborhood U of p, there exists a compact neighborhood K of p such that K c U.

Proof. Since M is a topological manifold, it is locally Euclidean. Hence, there exists a coordinate
chart (V, ¢) such that:

e peVcU,
e (V) cR"is open.
Choose an open ball B, (¢(p)) < ¢(V) centered at ¢ (p). Now, consider the closed ball Er/g (p(p) c
B, (¢(p)) and define:
K=¢! (Exz((p(p))).
We verify the required properties:

(1) K is compact: The closed ball B,/ (¢(p)) is compact in R”. Since ¢ is a homeomorphism
onto its image, K is compact in M. _
(2) K is aneighborhood of p: The open ball B, ;> (¢(p)) is contained in B, ;2(¢(p)), so

¢~ (Br2(@(p)) K.

This set is open in M and contains p, so K is a neighborhood of p.
(3) Kc U: Since K c V c U, the result follows.

Thus, K is a compact neighborhood of p contained in U. U
This property shows that M is locally compact according to the definition:

Definition 2.2. A topological space X islocally compact if for every point p € X and every open
neighborhood U of p, there exists a compact neighborhood K of p such thatpe K c U.
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2.2. Exhaustion by Compact Sets. A crucial consequence of second countability and local com-
pactness is the existence of exhaustion by compact sets:

Definition 2.3. A topological space X admits an exhaustion by compact sets if there exists a
sequence {K,}?"_, of compact subsets such that:

(1) K, cint(K,41) foralln=1,
2) U2, Ky = X.

Remark 2.4. For any exhaustion {K;} of X, we have:

o0
X = [ Int(ky).
i=1
This has a useful consequence: any compact subset K’ X is eventually contained in the
interiors of the K;’s. Specifically, since {Int(Ki)}‘l?‘;1 is an open cover of K’ and K’ is compact,
there exists a finite subcover. Due to the nesting property K; < Int(K;41), this implies:

K' cInt(K;) foralli=io(K").

In other words, any compact subset of X is eventually "absorbed" by the interiors of the exhaus-
tion sets.

2.4. Construction of Compact Exhaustion.

Proposition 2.5. Let X be a second countable, locally compact, Hausdor{f topological space. Then
X admits an exhaustion by compact subsets.

This result highlights one of the key motivations for assuming second countability in the def-
inition of topological manifolds.

Proof. We construct the exhaustion explicitly. Let 28 be a countable basis for the topology of X.
Define the subcollection:

AB' = {Be P Bis compact}.
By local compactness and Hausdorff condition, 98’ remains a basis for X. Actually, Let p € X
be an arbitrary point and A € Gx be any open neighborhood of p. By local compactness, there
exists an open set A’ and a compact set K such that pe A’ < K < A.

Since 48 is a basis, there exists some B € 2 with p € B < A’. Now, using the Hausdorff property,
we observe that K is closed in X (as compact subsets of Hausdorff spaces are closed). Therefore,
we have:

Bc A'cK.
Since K is compact and B is a closed subset of K, it follows that B is compact. This shows that
B € %', and we have found B € 9’ with p € B c A, proving that 48’ is indeed a basis for X.

Enumerate the elements of 8’ as Uy, U, Us, ...

We now construct the exhaustion recursively:

Base case: Let K; = 71

Inductive step: Suppose K,, has been constructed. Since Kj, is compact and {U;} is an open
cover of X, there exists m,, > n such that:

KycUyuUU---UUy,.
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Define:

Kps1=U Ul U--UUp,,.
By construction, each K, is compact (finite union of compact sets), K,,  int(Kj+1) (since K,

is contained in the union of the U;’s, which are open subsets of K;,,1), and U)”, K;, = X (since
{U;} covers X). O

2.5. Paracompactness. We now introduce a fundamental topological property that will play a
crucial role in our study of manifolds.

2.5. Basic Definitions.

Definition 2.6. Let X be a topological space.

(1) Anopen cover of X is a collection % < Ox of open sets such that X =Uyeq, U.

(2) An open cover % is called locally finite if every point p € X has a neighborhood W that
intersects only finitely many U € % .

(3) An open cover V' is arefinement of an open cover % if for every V € ¥, there exists U € U
suchthatV c U.

(4) X is paracompact if every open cover has a locally finite refinement.

Remark 2.7. Paracompactness serves to "tame" potentially complicated open covers. In the con-
text of manifolds, we frequently work with collections of coordinate charts covering the space.
Although there may be infinitely many charts, paracompactness guarantees the existence of a re-
finement where only finitely many charts interact at any given point. This localization property
makes many local arguments feasible and is essential for various global constructions.

2.7. Paracompactness of Topological Manifolds.
Theorem 2.8. Every topological manifold is paracompact.

Remark 2.9. The primary application of paracompactness in differential geometry is the con-
struction of partitions of unity. These are families of smooth functions that sum to 1 everywhere
while maintaining local finiteness (only finitely many are nonzero in any compact neighbor-
hood). Partitions of unity enable us to glue locally defined objects into global ones. We will explore
this in detail in subsequent lectures.

Proof. The proof proceeds by constructing a locally finite refinement using the compact exhaus-
tion of M. Let {Ki}‘l?;’1 be an exhaustion by compact subsets with K; c int(K; ;) for all i.
Define the compact annuli:

N; = K;\int(K;_1), with Ky =@.
These sets cover M since U2, K; = M and K; < int(Kj+1).
Now define open neighborhoods for these annuli:
N; =int(Ki41) \ Ki—,

where we take K_; = Ky = @. Note that N; ¢ N; for each i.
Let % be an arbitrary open cover of M. For each i, the compact set N; can be covered by
finitely many elements of %. Let %; be such a finite subcover for ;.
Define the refinement:
Vi ={N;nU:U e},
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and let V' =32, 7.
We now verify that 7 is a locally finite refinement of %:
(1) Refinement: Each V € 7 is of the form N; n U for some U € %; c%,so V c U.
(2) Locally finite: For any p € M, there exists a minimal i such that p € K;. Consider the
neighborhood W =int(Kj41) \ K;—». Then:
o If j>i+2,then WnN]- cKiy1n(M\K;j) = @ since j > i+2implies K41 < Kj_.
e If j<i—-2,then WﬂNj c(M\K;-2)NKj+1 =@ since j<i-—2implies Kj;1 < K; .
Thus W intersects only Ni_»,Ni_1,N;, Nj+1, Niio (with appropriate adjustments for bound-
ary cases). Since each 7] is finite, W intersects only finitely many elements of 7.

Therefore, 7 is a locally finite refinement of %, proving that M is paracompact. 0
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