Lecture 4

November 21, 2025

1. EXAMPLES OF SMOOTH MANIFOLDS

Having defined the concept of a differential structure, we now examine several important
examples that illustrate this fundamental notion.

Example 1.1 (Euclidean Space). The Euclidean space R" carries a natural differential struc-
ture. The standard smooth structure is given by the maximal atlas containing the identity chart
(R™,1grn). This atlas consists of all charts that are smoothly compatible with the identity map,
forming what we call the standard differentiable structure on R".

Example 1.2 (Open Submanifolds). If M is a smooth manifold with maximal atlas </ (M) and
U < M is an open subset, then U naturally inherits a smooth manifold structure. The induced
maximal atlas on U is given by:

LU ={(V,d): (V,p) € (M) and V < U}.

That is, we simply restrict the charts of M to the open subset U. One readily verifies that this
collection forms a maximal atlas on U, making it a smooth submanifold of M.

Example 1.3 (Distinct but Diffeomorphic Structures on R). Consider the topological manifold
R. The standard differential structure is given by the maximal atlas containing the identity chart
(R,1R). However, we can define a different differential structure on the same underlying topolog-
ical space using the chart (R, ) where ¢(x) = x°.

These two charts are not smoothly compatible: the transition map idgo ¢~ () = is not
differentiable at t = 0. Therefore, the maximal atlases generated by these charts are distinct, giving
R (as a topological manifold) at least two different smooth structures.

This example demonstrates that equality of differential structures (i.e., requiring the maximal
atlases to be identical) is too restrictive a notion of equivalence. A more appropriate concept,
which we will introduce later, is that of diffeomorphism - two manifolds are considered equiv-
alent if there exists a smooth bijection between them with smooth inverse, even if their maximal
atlases differ.

tl/3

IIn our previous lectures, we began with a topological space and imposed additional structures—
local Euclideanness, Hausdorff, and second countability—to define a topological manifold. We
then refined this by introducing an atlas and requiring smooth transition maps to arrive at the
concept of a smooth manifold.

However, we can adopt an alternative perspective. Instead of starting with a pre-existing
topological space, we can take the charts themselves as the primitive objects. By collecting a

sufficient family of compatible charts, we can construct the manifold from the ground up.
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This alternative approach provides a different way to understand manifolds. Just as in quan-
tum mechanics we can understand particles through their measurable interactions rather than
predetermined trajectories, here we can understand manifolds through their local coordinate
descriptions and how they relate to one another.

This alternative perspective is formalized in the following construction lemma, which allows
us to build a manifold using only set-theoretic data.

Lemma 1.4 (Manifold Construction Lemma). Let X be a set. Suppose we are given a collection
{Uq}aer of subsets of X and a collection of bijections {¢pq : Uy — o (Ug)}aer Where each ¢y (Uy) is
an open subset of R", such that:

(1) Foralla,p € I, the sets po(Ug N Up) and ¢g(Uy N Ug) are open inR".
(2) The transition maps ¢g 0(/5;1 1 (Ug NUp) — pp(Ug N Up) are smooth.
(3) The collection {U,} covers X.
(4) (Hausdorff Separation) For any two distinct points p,q € X, there exist indices a, € 1
with p € Uy, q € Up, and open subsets Vo < Uy, Vg < Ug such that:
e peVyandqe Vg
o VN Vﬁ =@
o pa(Vy) and ¢g(Vp) are open inR"
(5) (Second Countability) There exists a countable subcollection {Uy,}32, that still covers X.
Then there exists a unique topology and smooth structure on X making it a smooth n-dimensional
manifold for which the (Uy, ¢4) form a smooth atlas.

Proof. Define a topology on X by declaring O < X open if and only if ¢, (O N Uy) is open in R"
for all a € I. This is the unique topology making all ¢, homeomorphisms.
The given conditions ensure:

e Local Euclideanness: Each (Uy, ¢p4) is a homeomorphism onto an open subset of R".

» Hausdorff: Condition (4) provides separation via charts.

 Second countability: Condition (5) gives a countable cover, and R" has countable bases.
» Smooth structure: Conditions (1)-(3) ensure the charts form a compatible atlas.

Uniqueness follows because any topology making the ¢, homeomorphisms must coincide
with our definition. 0

This lemma tells us that we don’t need to start with a topology on X; the topology is induced
by the charts.
It is instructive to compare this with another gluing construction:

Theorem 1.5 (Patching Smooth Structures). Let M be a topological manifold that can be written
as a union of subsets M =, U, . Suppose each U, is endowed with a smooth manifold structure
such that for every a, B, the smooth structures induced on U, NUg from Uy and Up coincide. Then
there exists a unique smooth structure on M that restricts to the given smooth structure on each
Ug.

Proof. For each «a, let &/, be the maximal smooth atlas on U, defining its smooth structure.
Define an atlas on M by taking the union:

ot = Aa.
a

Then:
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e of covers M since the U, cover M and each ¢, covers U,,.

» Any two charts in o are compatible: if (V,¢) € o/, and (W,y) € o/, then the transition
map yo¢ ! is smooth because the smooth structures on U, N Up from o/, and /4 coin-
cide.

The maximal atlas containing </ gives the desired smooth structure on M. Uniqueness follows
since any such structure must contain all <7,. 0

2. GRASSMANN MANIFOLDS VIA THE MANIFOLD CONSTRUCTION LEMMA

We now construct the Grassmann manifold G(k, n) using the Manifold Construction Lemma.
Let X = G(k, n) be the set of all k-dimensional linear subspaces of R".

2.0. Coordinate Charts. There is a natural identification between k-dimensional subspaces of
R’ and equivalence classes of full-rank 7 x k matrices, where two matrices are equivalent if their
column spaces coincide (i.e., they differ by right multiplication by an element of GL(k)). Under
this identification, we can represent each subspace W € G(k, n) as an equivalence class [X] of
matrices whose columns form a basis for W.

For each k-element subset I c {1,..., n}, define:

U; ={W € G(k, n) : the projection ;: W — RFis an isomorphism}
Equivalently, if we represent W as the column space of an n x k matrix X of full rank, then:
Uy ={[X] :det(X)) # 0}

where X7 is the k x k submatrix of X with rows indexed by I.
Define the chart map ¢; : U; — Mat((n — k) x k,R) = RK("=5) by

G1(1X]) = Xpe X!
where € is the complement of 1.

Remark 2.1. The chart map ¢ is an open map. To see this, fix X; and let X;c vary over an open set
inMat((n—k)x k,R). Since for fixed X;, the map Xjc — Xje XI_1 is a linear isomorphism. Therefore,
¢ sends open sets to open sets.

Proposition 2.2. The collection {(Uy, ¢1)} satisfies the conditions of the Manifold Construction
Lemma.

Proof. We verify each condition:

Covering: For any k-dimensional subspace W, there exists some I such that the projection
7 W —Rlisan isomorphism. Thus the U; cover G(k, n).

Openness: For any I, J, the sets ¢;(U; N Uj) and ¢;(U; N Uj) are open in RK=0) | 35 they are
defined by the non-vanishing of certain determinants.

Smooth transitions: For [X] € Uy n Uy, the transition map is:

[4))

Pjodr (A :¢1(

To compute this, we find g € GL(k) such that:

[)e=c
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where B corresponds to rows J and C to rows J¢. Then ¢;([X]) = C B~!. Thisis arational function
in the entries of A, hence smooth.

Hausdorff separation: Let [X],[Y] € G(k, n) be distinct. Consider the matrix ();) which has

rank at least k + 1 since [X] # [Y].
By the lower semicontinuity of matrix rank, there exists € > 0 such that any matrix within € of

();) has rank at least k+ 1.

Let Vx be the e€/2-neighborhood of X in the space of n x k matrices of rank k, and Vy the
€/2-neighborhood of Y. Choose € small enough so that Vx c U; and Vy c Uj, where X € Uy and
Ye U].

Then [Vx] and [Vy] are the required open subsets with [X] € [Vx] c Uy, [Y] € [Vy] c Uy, [Vx]IN
[Vy] = @, and ¢;([Vx]), ¢;([Vy]) are open in RK?*=0),

Second countability: There are only (’;) charts, which is finite, so the atlas is countable. ]

By the Manifold Construction Lemma, G(k, n) is a smooth manifold of dimension k(n — k).

This construction demonstrates the power of the Manifold Construction Lemma. We built
the Grassmann manifold directly from local coordinate descriptions, without needing to first
define it as a quotient space or prove it is Hausdorff by other means.

The Grassmann manifold G(k, n) plays a fundamental role in many areas of mathematics, in-
cluding algebraic geometry, representation theory, and topology. Its construction is remarkably
versatile-indeed, the Grassmannian can be defined over any field (such as the complex num-
bers C, giving the complex Grassmannian G¢(k, 1)), and even over more general rings, though
the smooth manifold structure is specific to the real and complex cases. This universality makes
Grassmannians fundamental objects across diverse branches of mathematics, from classical ge-
ometry to modern arithmetic geometry.

3. SMOOTH MAPS AND DIFFEOMORPHISMS

Let M™ and N” be two differential manifolds. Amap f: M — N is said to be a smooth map if:

(1) fiscontinuous.
(2) f is "locally given by smooth functions", that is, there exists atlases </ of M and 28 of N
such that if (U, ¢) € o and (V,y) € 28, then setting W = U n f~1(V), the composite

oo e w L v Lyw)

is smooth.

Remark 3.1. (1) We describe condition 2 by saying that [ is "locally given by smooth func-
tions" since, in coordinates, composites of the formy o f o¢~! may be written as n-tuples
of smooth function of m variables.

(2) Condition 2 is independent of the choice of atlases &/ and 9B, as is seen by an argument
similar to the one showing that compatibility of atlases in an equivalence relation.

The following formal properties of smooth maps are easily verified:

(1) The composition of smooth maps is a smooth map.
(2) The identity map on a manifold is a smooth map.
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Definition 3.2. Let f: M — N be a smooth map. We say that f is a diffeomorphism if there exists
a smooth map g: N — M such that

gof=1y and fog=1y.
In this case, we say that M and N are diffeomorphic.

Remark 3.3. Bijective smooth maps is not necessary a diffeomorphism, as the example f :R — R
given by f(x) = x> shows.

After defining differentiable manifolds and smooth maps between them, we can employ the
perspective of categories and functors to describe differential structures. While this abstract
language may seem simple and mundane, it will greatly simplify our subsequent discussions
on the relationship between immersions and differential structures. Moreover, the categorical
viewpoint is widely used in mathematical branches such as algebraic topology and algebraic
geometry, making familiarity with this language beneficial. Roughly speaking, the underlying
philosophy is that an object is uniquely determined by its relationships with other objects.

Theorem 3.4. Let M be a topological manifold, let «f and 98 be full atlases on M, and let M
(resp. Mg) denote the smooth manifold whose underlying space is M that is determined by <f
(resp. ). Then the following are equivalent:

(1) Mo = Mg, thatis, of = 8.

(2) Theidentity map 1y;: My — Mg is a diffeomorphism.

(3) For all manifolds N, we have the equality C*° (M, N) = C*° (Mg, N).
(4) For all manifolds N, we have the equality C*°(N, M) = C*°(N,Mg).

Proof. Although this theorem can be viewed as a special case of the general categorical principle
that an object representing a functor is determined up to unique isomorphism, we provide a
concrete proof in this context.

The implications (1) = (2) and (2) < (3) © (4)are straightforward.

We now prove (2) = (1): We need to show that any chart (U, ¢) € o« is compatible with any
chart (V,y) € B. If UnV = @, the compatibility is trivial. Assume UNV # @ and take any p €
UNV. Since 1) is a diffeomorphism, by definition there exist charts (U’, ¢) € o and (V',y') € %8
such that p € U’ n V' and the transition map

¥ o vy =¥ 0l o T iy 10U NV =y WU N V)
is a diffeomorphism. Since (U, ¢) and (U’, ¢') belong to the same atlas <, and (V, ) and (V',v")
belong to 48, the transition maps
¢ op! |¢(U0U,) :pUNU)— ¢ (UNU)
and
wory'! |w,(vﬁv,) YV V)—ypyVnV)
are diffeomorphisms. Therefore, their composition

wo¢_l|¢(UmVnU'mV’) pUNVAUNV)-yUnNVNU NV

is a diffeomorphism. Since p was arbitrary, (U, ¢) and (V,v) are compatible. As o« and 98 are
both maximal atlases, this implies «f = %. O
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This theorem demonstrates that the smooth structure of a manifold is completely determined
by either:
 The collection of smooth maps from the manifold to arbitrary test manifolds, or
e The collection of smooth maps from arbitrary test manifolds to the manifold.

It has been (and still remains) a celebrated problem to compare the category of topological
manifolds with the category of smooth manifolds. Here are some historical landmarks:

o H. Whitney (1936): For k = 1, every C structure is C¥ equivalent to a smooth structure.
E. Moise (1952): For n < 4, every topological manifold carries a unique smooth structure
up to diffeomorphism.

J. Milnor (1956): Exotic smooth structures exist. In particular, the topological manifold
S7 carries smooth structures that are not diffeomorphic to the standard one.

M. Kervaire (1960): There exists a compact 10-dimensional topological manifold that
carries no smooth structure at all.

M. Freedman / S. Donaldson (1982): R* carries exotic smooth structures.

Comment on spherical case: For spheres S” with n # 4, the classification of smooth structures
is intimately related to the homotopy groups of spheres. In fact, the number of distinct smooth
structures on S” for n # 4 is determined by a certain invariant connected to these homotopy
groups. Currently, this classification is known for dimensions up to about 90, with the number
of exotic spheres growing rapidly in higher dimensions. However, the case of S* remains one of
the most famous open problems in differential topology-it is still unknown whether S* admits
any exotic smooth structures (the smooth Poincaré conjecture in dimension 4).

In this course, we will provide a complete classification of smooth structures on 1-dimensional
manifolds. While this result is relatively simple, it is by no means trivial and illustrates the funda-
mental ideas of differential topology. If time permits, we will present two different approaches
to this classification: one using vector fields and their flows, and another using the technique
of handle straightening-both methods offering distinct geometric insights into the structure of
1-manifolds.

The classification of 2-dimensional manifolds will be covered in subsequent courses on differ-
ential topology, where more sophisticated tools like Morse theory and handle decompositions
are developed. As for the fascinating and complex world of 3-dimensional manifolds—including
the celebrated Poincaré conjecture proved by Perelman-this typically becomes the subject of
specialized research, requiring deep techniques from geometric analysis and low-dimensional
topology.
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