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1. CUTOFF FUNCTIONS

All constructions in this section rely on the existence of smooth functions that are positive
on specified regions of a manifold and identically zero elsewhere. We begin by constructing a
fundamental smooth function on the real line that transitions from zero to positive.

Lemma 1.1 (Smooth Transition Function). The function f : R → R defined by

f (t ) =
{

e−1/t t > 0

0 t É 0

is smooth.

Proof. We proceed by induction on n to show that for t > 0,

f (n)(t ) = d n f

d t n
= Pn(t−1)e−1/t

where Pn is a polynomial. The base case n = 0 holds trivially. Assuming the formula holds for n,
we differentiate to obtain:

f (n+1)(t ) = [
P ′

n(t−1)(−t−2)+Pn(t−1)t−2]e−1/t = Pn+1(t−1)e−1/t .

To prove smoothness at t = 0, we note that limt→0+ t−1 f (n)(t ) = 0 for every n Ê 0. This ensures
that all derivatives of f exist and are continuous at t = 0, and in fact f (n)(0) = 0. □

Lemma 1.2 (One-Dimensional Cutoff Function). Given real numbers r1 < r2, there exists a smooth
function h : R → R such that:

• h(t ) ≡ 1 for t É r1

• 0 < h(t ) < 1 for r1 < t < r2

• h(t ) ≡ 0 for t Ê r2

Proof. Let f be the function from the previous lemma, and define

h(t ) = f (r2 − t )

f (r2 − t )+ f (t − r1)
.

The denominator is always positive since for any t ∈ R, at least one of r2 − t > 0 or t − r1 > 0
holds. The function h inherits smoothness from f , and direct verification shows it satisfies all
the stated properties. □

A function with these properties is called a cutoff function.

Lemma 1.3 (Smooth Bump Function). Given positive real numbers r1 < r2, there exists a smooth
function H : Rn → R such that:
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• H ≡ 1 on B(0,r1)
• 0 < H(x) < 1 for x ∈ B(0,r2) \ B(0,r1)
• H ≡ 0 on Rn \ B(0,r2)

Proof. Define H(x) = h(|x|), where h is the one-dimensional cutoff function from the previous
lemma with the same radii r1 < r2. The function H is smooth on Rn \ {0} as a composition of
smooth functions. At the origin, H is identically 1 in a neighborhood, hence smooth there as
well. □

2. PARTITIONS OF UNITY

It will be convenient in various contexts to express smooth functions (as well as differential
forms and vector fields that we will encounter in later lectures) as sums of locally supported
functions. This leads us to the concept of a partition of unity, whose existence fundamentally
relies on the assumptions that M is second-countable and Hausdorff. Recall that the support
supp(η) ⊂ M of a continuous function η : M → R is defined as the closure of the open subset
{x : η(x) ̸= 0}.

Definition 2.1. Let W = {Wi }i∈I be an open cover of M. A partition of unity subordinate to W is a
collection of smooth functions ηi : M → [0,1] satisfying:

(1) supp(ηi ) ⊂Wi for each i ∈ I ,
(2) The family {supp(ηi ) : i ∈ I } is locally finite, meaning every point p ∈ M has a neighbor-

hood intersecting only finitely many supp(ηi ),
(3)

∑
i∈I ηi (p) = 1 for all p ∈ M.

Theorem 2.2 (Existence of Partitions of Unity). Every open cover W = {Wi }i∈I of M admits a
subordinate partition of unity.

We now proceed to prove the existence of partitions of unity. First, we recall a key result
established in Lecture 2:

Proposition 2.3 (Exhaustion by Compact Sets). Every topological manifold M admits an exhaus-
tion by compact sets, i.e., there exists a sequence {Kn}∞n=1 of compact subsets such that:

(1) Kn ⊂ int(Kn+1) for all n Ê 1,
(2)

⋃∞
n=1 Kn = M.

Recall also that if U is an open cover of M , an open cover V is called a refinement of U if
every V ∈ V is contained in some U ∈ U . The previous proposition implies that M is paracom-
pact–that is, every open cover admits a locally finite refinement. We will first establish a slightly
weaker version of Theorem 2.2, and in the process provide a detailed proof of the paracompact-
ness of M (which was sketched in Lecture 2).

Proposition 2.4. Every open cover W = {Wi }i∈I of M has a refinement that admits a subordinate
partition of unity.

Proof. Let K1 ⊂ int(K2) ⊂ K2 ⊂ int(K3) ⊂ ·· · be an exhaustion of M by compact sets as established
previously, and let W = {Wi }i∈I be an open cover. For any point p ∈ M , there exists a unique n
such that p ∈ Kn \ Kn−1 (where we take K0 =;). Then int(Kn+1) \ Kn−1 is an open neighborhood
of p. We choose a chart (Uα,φα) around p such that φα(Uα) = B(z,r ) ⊂ Rn and

Uα ⊂Wi ∩ (int(Kn+1) \ Kn−1)
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for some i ∈ I .
Varying p over M (and thus over all n Ê 1), the collection of open sets φ−1

α (B(z,r /3)) covers
M . In particular, for each n, the compact set Kn \int(Kn−1) is covered by finitely many such sets,
say φ−1

αn
i

(B(zn
i ,r n

i /3)) for 1 É i É jn . Taking the union over n of these finite families, we obtain a

countable open cover of M , since⋃
nÊ1

(Kn \ int(Kn−1)) ⊃ ⋃
nÊ1

(Kn \ Kn−1) = M .

By construction, each φ−1
αn

i
(B(zn

i ,r n
i /3)) is contained in some Wi , so this cover is a refinement of

W .
We now verify local finiteness. Let p ∈ M . Then p lies in some Kn \ Kn−1, and hence in the

open set int(Kn+1)\Kn−1. By construction, p is contained in one of the sets Uαn
i
=φ−1

αn
i

(B(zn
i ,r n

i )),

which is contained in int(Kn+1) \ Kn−1. Note that if Uαn
i

intersects Uαm
j

, then we must have

(int(Kn+1) \ Kn−1)∩ (int(Km+1) \ Km−1) ̸= ;,

which implies that m can only be n − 1, n, or n + 1. Therefore, each Uαn
i

can intersect only
finitely many Uαm

j
(specifically, at most jn−1+ jn+ jn+1 of them). This establishes local finiteness,

proving that M is paracompact.

Claim 2.5. For each i and n, there exists a smooth function ρ̃n
i : B(zn

i ,r n
i ) → [0,1] that vanishes

outside B(zn
i ,r n

i /2) and is identically 1 on B(zn
i ,r n

i /3).

This follows directly from the existence of smooth bump functions (Lemma 1.3) by appropri-
ate scaling and translation.

We now define smooth functions η̃n
i : M → [0,1] by

η̃n
i (p) =

{
ρ̃n

i (φαn
i

(p)) if p ∈φ−1
αn

i
(B(zn

i ,r n
i )),

0 otherwise.

Since the collection {φ−1
αn

i
(B(zn

i ,r n
i /3))} covers M and the collection {φ−1

αn
i

(B(zn
i ,r n

i ))} is locally

finite, the sum
p 7→∑

i ,n
η̃n

i (p)

is locally a finite sum of non-zero terms and hence defines a smooth function M → R>0. We then
define

ηn
i (p) = η̃n

i (p)∑
i ,n η̃

n
i (p)

.

This yields the desired partition of unity subordinate to the refinement {Uαn
i

} of W . □

Proof of Theorem 2.2. By the previous proposition we can find a refinement W ′ = {W ′
j } j∈J of W =

{Wi }i∈I and partition of unity {η′j : M → [0,1]} subordinate to it.

For j ∈ J , fix a Wi such that W ′
j ⊂Wi . This gives a function λ : J → I . We claim that

ηi := ∑
j∈λ−1(i )

η′j

gives the desired partition of unity. This is a locally finite sum and hence a smooth function and
the sum of ηi is 1 everywhere. Also since that supp(η′j ) ⊂W ′

j and hence is also contained in Wi .
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Now observe that
supp(ηi ) = η−1

i ((0,1]) = ⋃
j∈λ−1(i )

(η′j )−1((0,1]).

In general, the closure of the union of subsets is larger the the union of closures of these subset.
But Note that the latter is a closure of a locally finite union of open subsets. The local finiteness
ensures that this is the union of the closures, by directly verify the definition. So we conclude
that

supp(ηi ) = ⋂
j∈λ−1(i )

(η′j )−1((0,1]) = ⋃
j∈λ−1

supp(η′j ) ⊂W j .

□

3. APPLICATIONS OF PARTITIONS OF UNITY

Proposition 3.1 (Smooth Urysohn Lemma). Let M be a smooth manifold, and let A,B ⊂ M be
disjoint closed subsets. Then there exists a smooth function λ : M → [0,1] such that λ|A ≡ 0 and
λ|B ≡ 1.

Proof. Consider the open cover of M given by U1 = M \ A and U2 = M \ B . Let {η1,η2} be a
smooth partition of unity subordinate to this cover. Since supp(η1) ⊂ U1, we have η1|A ≡ 0.
Similarly, as supp(η2) ⊂ U2, we have η2|B ≡ 0. Now define λ = η1. Then λ|A = 0, and on B we
have λ= η1 = 1−η2 ≡ 1, which completes the proof. □

The Smooth Urysohn Lemma has an equivalent formulation that is often more convenient
for applications:

Proposition 3.2 (Smooth Bump Function). Let M be a smooth manifold, A ⊂ M a closed subset,
and U ⊂ M an open subset containing A. Then there exists a smooth function ψ : M → [0,1] such
that:

• ψ|A ≡ 1
• supp(ψ) ⊂U

Proof. Apply the Smooth Urysohn Lemma to the disjoint closed sets A and M \U . This yields a
smooth function λ : M → [0,1] with λ|A ≡ 0 and λ|M\U ≡ 1. Define ψ= 1−λ. Then ψ|A ≡ 1, and
since λ≡ 1 on M \U , we have ψ≡ 0 on M \U , hence supp(ψ) ⊂U . □

Remark 3.3. These two propositions are equivalent: each can be derived from the other. The
Smooth Bump Function version is particularly useful for constructing local extensions and cutoff
functions, while the original Urysohn formulation provides a clear separation property for dis-
joint closed sets.

Our second application concerns the extension of smooth functions from closed subsets. Let
M and N be smooth manifolds, and A ⊂ M an arbitrary subset. We say that a map F : A → N is
smooth on A if for every point p ∈ A, there exists an open neighborhood W ⊂ M containing p
and a smooth map F̃ : W → N that agrees with F on W ∩ A.

Lemma 3.4 (Extension Lemma for Smooth Functions). Let M be a smooth manifold, A ⊂ M a
closed subset, and f : A → Rk a smooth function. For any open subset U ⊂ M containing A, there
exists a smooth function f̃ : M → Rk such that:
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• f̃ |A = f
• supp( f̃ ) ⊂U

Proof. For each point p ∈ A, choose a neighborhood Wp ⊂U and a smooth function f̃p : Wp →
Rk that agrees with f on Wp ∩ A. The collection {Wp : p ∈ A}∪ {M \ A} forms an open cover of M .
Let {ηp : p ∈ A}∪ {η0} be a smooth partition of unity subordinate to this cover, with supp(ηp ) ⊂
Wp and supp(η0) ⊂ M \ A.

Define the global function f̃ : M → Rk by

f̃ (x) = ∑
p∈A

ηp (x) f̃p (x).

This sum is well-defined since the partition of unity is locally finite. The function f̃ is smooth,
agrees with f on A, and has support contained in U . □

Remark 3.5. The classical Whitney Extension Theorem provides a more refined result, requiring
only compatibility conditions on the partial derivatives rather than assuming smoothness in the
sense defined above.

For example, consider a function defined on the union of linear subspaces of Euclidean space
in general position. If the restriction of the function to each subspace is smooth, the Whitney
Extension Theorem guarantees the existence of a smooth extension to the whole Euclidean space.
This situation frequently arises in geometry or analysis and cannot be handled by the Extension
Lemma above, which requires the function to already have local smooth extensions near every
point of the closed set.

Next, we use partitions of unity to construct a special type of smooth function. If M is a
topological space, an exhaustion function for M is a continuous function f : M → R such that
for every c ∈ R, the sublevel set f −1((−∞,c]) is compact. The terminology arises from the fact
that as n ranges over the positive integers, the sublevel sets f −1((−∞,n]) form an exhaustion of
M by compact sets.

Proposition 3.6 (Existence of Smooth Exhaustion Functions). Every smooth manifold admits a
smooth positive exhaustion function.

Proof. Let {V j }∞j=1 be a countable open cover of M by precompact open subsets, and let {η j } be
a smooth partition of unity subordinate to this cover. Define f ∈C∞(M) by

f (p) =
∞∑

j=1
jη j (p).

To verify that f is an exhaustion function, fix c ∈ R and choose a positive integer N > c. If p ∉⋃N
j=1 V j , then η j (p) = 0 for 1 É j É N , and thus

f (p) =
∞∑

j=N+1
jη j (p) Ê

∞∑
j=N+1

Nη j (p) = N
∞∑

j=N+1
η j (p).

Since {η j } is a partition of unity and η j (p) = 0 for j É N , we have
∑∞

j=N+1η j (p) = 1, which implies

f (p) Ê N > c. Equivalently, if f (p) É c, then p ∈ ⋃N
j=1 V j . Therefore, f −1((−∞,c]) is a closed

subset of the compact set
⋃N

j=1 V j and is consequently compact. □

https://en.wikipedia.org/wiki/Whitney_extension_theorem
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As our final application of partitions of unity, we prove a remarkable result in differential ge-
ometry: every closed subset of a smooth manifold can be realized as the zero set of a smooth
real-valued function. While we will not use this theorem directly in subsequent lectures, it pro-
vides an interesting contrast to Sard’s theorem, which we will study later.

Sard’s theorem states that for any smooth map between manifolds, the set of critical values
has measure zero. This implies that for a generic smooth function, almost every level set is a
smooth submanifold. The present theorem, however, shows that by carefully constructing our
smooth function, we can force a specific closed set (which may be highly irregular) to appear as
a level set. This contrast highlights the flexibility of smooth functions compared to the generic
behavior described by Sard’s theorem.

Theorem 3.7 (Closed Sets as Zero Sets of Smooth Functions). Let M be a smooth manifold. For
any closed subset K ⊂ M, there exists a smooth nonnegative function f : M → R such that f −1(0) =
K .

Proof. Since M is a smooth manifold, it is paracompact. Consider the open set U = M \ K . We
construct a locally finite open cover {V j } j∈J of U such that each V j is precompact and V j ⊂U .

For each j ∈ J , we construct a smooth nonnegative function ψ j : M → R with the following
properties:

• ψ j > 0 on V j

• supp(ψ j ) ⊂U

Such functions can be constructed using bump functions supported in coordinate charts.
Now, let {η j } j∈J be a smooth partition of unity subordinate to the cover {V j } j∈J . Define the

function f : M → R by
f (p) = ∑

j∈J
η j (p)ψ j (p).

We verify that f has the desired properties:
If p ∈ K , then p ∉ U and thus p ∉ supp(η j ) for all j , so f (p) = 0. Conversely, if p ∉ K , then

p ∈U and there exists some j with η j (p) > 0 and ψ j (p) > 0, so f (p) > 0. Therefore, f −1(0) = K .
□
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