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1. APPLICATIONS OF PARTITIONS OF UNITY

Proposition 1.1 (Smooth Urysohn Lemma). Let M be a smooth manifold, and let A,B ⊂ M be
disjoint closed subsets. Then there exists a smooth function λ : M → [0,1] such that λ|A ≡ 0 and
λ|B ≡ 1.

Proof. Consider the open cover of M given by U1 = M \ A and U2 = M \ B . Let {η1,η2} be a
smooth partition of unity subordinate to this cover. Since supp(η1) ⊂ U1, we have η1|A ≡ 0.
Similarly, as supp(η2) ⊂ U2, we have η2|B ≡ 0. Now define λ = η1. Then λ|A = 0, and on B we
have λ= η1 = 1−η2 ≡ 1, which completes the proof. □

The Smooth Urysohn Lemma has an equivalent formulation that is often more convenient
for applications:

Proposition 1.2 (Smooth Bump Function). Let M be a smooth manifold, A ⊂ M a closed subset,
and U ⊂ M an open subset containing A. Then there exists a smooth function ψ : M → [0,1] such
that:

• ψ|A ≡ 1
• supp(ψ) ⊂U

Proof. Apply the Smooth Urysohn Lemma to the disjoint closed sets A and M \U . This yields a
smooth function λ : M → [0,1] with λ|A ≡ 0 and λ|M\U ≡ 1. Define ψ= 1−λ. Then ψ|A ≡ 1, and
since λ≡ 1 on M \U , we have ψ≡ 0 on M \U , hence supp(ψ) ⊂U . □

Remark 1.3. These two propositions are equivalent: each can be derived from the other. The
Smooth Bump Function version is particularly useful for constructing local extensions and cutoff
functions, while the original Urysohn formulation provides a clear separation property for dis-
joint closed sets.

Our second application concerns the extension of smooth functions from closed subsets. Let
M and N be smooth manifolds, and A ⊂ M an arbitrary subset. We say that a map F : A → N is
smooth on A if for every point p ∈ A, there exists an open neighborhood W ⊂ M containing p
and a smooth map F̃ : W → N that agrees with F on W ∩ A.

Lemma 1.4 (Extension Lemma for Smooth Functions). Let M be a smooth manifold, A ⊂ M a
closed subset, and f : A → Rk a smooth function. For any open subset U ⊂ M containing A, there
exists a smooth function f̃ : M → Rk such that:

• f̃ |A = f
• supp( f̃ ) ⊂U
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Proof. For each point p ∈ A, choose a neighborhood Wp ⊂U and a smooth function f̃p : Wp →
Rk that agrees with f on Wp ∩ A. The collection {Wp : p ∈ A}∪ {M \ A} forms an open cover of M .
Let {ηp : p ∈ A}∪ {η0} be a smooth partition of unity subordinate to this cover, with supp(ηp ) ⊂
Wp and supp(η0) ⊂ M \ A.

Define the global function f̃ : M → Rk by

f̃ (x) = ∑
p∈A

ηp (x) f̃p (x).

This sum is well-defined since the partition of unity is locally finite. The function f̃ is smooth,
agrees with f on A, and has support contained in U . □

Remark 1.5. The classical Whitney Extension Theorem provides a more refined approach, requir-
ing only compatibility conditions on partial derivatives.

The definition of smoothness on closed subsets is not entirely canonical. For example, on the
union of the coordinate planes x y, y z, and xz in R3, one might define smoothness as having
smooth restrictions to each plane separately, which appears weaker than requiring local smooth
extensions.

Remarkably, the Whitney Extension Theorem establishes the equivalence of these two defini-
tions: a function on this union admits local smooth extensions if and only if its restrictions to
each coordinate plane are smooth.

Next, we use partitions of unity to construct a special type of smooth function. If M is a
topological space, an exhaustion function for M is a continuous function f : M → R such that
for every c ∈ R, the sublevel set f −1((−∞,c]) is compact. The terminology arises from the fact
that as n ranges over the positive integers, the sublevel sets f −1((−∞,n]) form an exhaustion of
M by compact sets.

Proposition 1.6 (Existence of Smooth Exhaustion Functions). Every smooth manifold admits a
smooth positive exhaustion function.

Proof. Let {V j }∞j=1 be a countable open cover of M by precompact open subsets, and let {η j } be
a smooth partition of unity subordinate to this cover. Define f ∈C∞(M) by

f (p) =
∞∑

j=1
jη j (p).

To verify that f is an exhaustion function, fix c ∈ R and choose a positive integer N > c. If p ∉⋃N
j=1 V j , then η j (p) = 0 for 1 É j É N , and thus

f (p) =
∞∑

j=N+1
jη j (p) Ê

∞∑
j=N+1

Nη j (p) = N
∞∑

j=N+1
η j (p).

Since {η j } is a partition of unity and η j (p) = 0 for j É N , we have
∑∞

j=N+1η j (p) = 1, which implies

f (p) Ê N > c. Equivalently, if f (p) É c, then p ∈ ⋃N
j=1 V j . Therefore, f −1((−∞,c]) is a closed

subset of the compact set
⋃N

j=1 V j and is consequently compact. □

Next, we prove a remarkable result in differential geometry: every closed subset of a smooth
manifold can be realized as the zero set of a smooth real-valued function.

https://en.wikipedia.org/wiki/Whitney_extension_theorem
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Theorem 1.7 (Closed Sets as Zero Sets of Smooth Functions). Let M be a smooth manifold. For
any closed subset K ⊂ M, there exists a smooth nonnegative function f : M → R such that f −1(0) =
K .

Proof. Since M is a smooth manifold, it is paracompact. Consider the open set U = M \ K . We
construct a locally finite open cover {V j } j∈J of U such that each V j is precompact and V j ⊂U .

For each j ∈ J , we construct a smooth nonnegative function ψ j : M → R with the following
properties:

• ψ j > 0 on V j

• supp(ψ j ) ⊂U

Such functions can be constructed using bump functions supported in coordinate charts.
Now, let {η j } j∈J be a smooth partition of unity subordinate to the cover {V j } j∈J . Define the

function f : M → R by
f (p) = ∑

j∈J
η j (p)ψ j (p).

We verify that f has the desired properties:
If p ∈ K , then p ∉ U and thus p ∉ supp(η j ) for all j , so f (p) = 0. Conversely, if p ∉ K , then

p ∈U and there exists some j with η j (p) > 0 and ψ j (p) > 0, so f (p) > 0. Therefore, f −1(0) = K .
□

Remark 1.8. This theorem reveals that smooth functions can produce highly irregular zero sets,
contrasting sharply with the generic regularity guaranteed by Sard’s Theorem (to be studied in de-
tail when discussing transversality). Specifically, Sard’s Theorem ensures that for a smooth func-
tion, almost every level set is a smooth submanifold. Such generic properties–where "typical"
behavior differs radically from worst-case scenarios–are ubiquitous in differential manifold the-
ory, yet offer a novel perspective from the standpoint of classical calculus.

2. DENSITY OF SMOOTH FUNCTIONS

We now establish a fundamental approximation theorem: smooth functions are dense in the
space of continuous functions on manifolds with respect to uniform convergence. This result
underpins many constructions in geometric analysis, allowing us to approximate continuous
geometric structures by smooth ones.

2.0. Convolution in Euclidean Space. The key tool for our approximation is convolution, which
provides a method to smooth out functions while preserving their essential features.

Definition 2.1 (Convolution). Let f , g : Rn → R be measurable functions. The convolution of f
and g is defined as

( f ∗ g )(x) =
ˆ

Rn
f (y)g (x − y)d y,

whenever this integral exists.

Convolution provides a powerful smoothing technique when we take g to be a bump func-
tion. This construction exemplifies the utility of the bump functions we developed earlier.

Theorem 2.2 (Convolution Approximation in Rn). Let f : Rn → R be a continuous function with
compact support. For any ϵ> 0, there exists a smooth function g : Rn → R with compact support

https://en.wikipedia.org/wiki/Sard%27s_theorem
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such that:
sup
x∈Rn

| f (x)− g (x)| < ϵ.

Moreover, if f is supported in a compact set K , then g can be chosen with support contained in
any given open neighborhood of K .

Proof. Let ρ : Rn → R be a smooth bump function with ρ Ê 0, supp(ρ) ⊂ B(0,1), and
´

Rn ρ(x)d x =
1. For δ> 0, define the mollifier ρδ(x) = δ−nρ(x/δ) and consider the convolution

fδ(x) = ( f ∗ρδ)(x) =
ˆ

Rn
f (y)ρδ(x − y)d y.

This function is smooth (by differentiation under the integral sign) and has support contained
in the δ-neighborhood of supp( f ).

The key observation is that convolution averages the values of f near each point. Since f
is uniformly continuous (by compact support), for any ϵ > 0 we can choose δ > 0 such that
| f (x)− f (y)| < ϵ whenever |x − y | < δ. Then

| f (x)− fδ(x)| =
∣∣∣∣ˆ

Rn
[ f (x)− f (y)]ρδ(x − y)d y

∣∣∣∣É ˆ
Rn

| f (x)− f (y)|ρδ(x − y)d y < ϵ,

establishing uniform convergence. □

2.2. Global Approximation on Manifolds. We now extend this result to smooth manifolds us-
ing partitions of unity. The strategy is to work locally in coordinate charts and then glue the
approximations together.

Theorem 2.3 (Global Uniform Approximation on Manifolds). Let M be a smooth manifold and
f : M → R a continuous function. For any ϵ > 0, there exists a smooth function g : M → R such
that:

sup
x∈M

| f (x)− g (x)| < ϵ.

That is, C∞(M) is dense in C 0(M) with respect to uniform convergence.

Proof. Since M is a smooth manifold, it is paracompact and second countable. Let {Ui }∞i=1 be
a locally finite open cover of M by precompact coordinate charts, with each φi : Ui → Rn a
diffeomorphism onto its image. Let {ηi }∞i=1 be a smooth partition of unity subordinate to this
cover, with supp(ηi ) ⊂Ui .

The precompactness condition ensures that each Ui is compact, which will be crucial for our
local approximations.

For each i , define fi = ηi f . This function is continuous and supported in Ui . Consider the
pushforward f̃i = fi ◦φ−1

i defined on φi (Ui ) ⊂ Rn . Since Ui is precompact, f̃i has compact sup-
port in φi (Ui ).

By the Euclidean approximation theorem, there exists a smooth function g̃i :φi (Ui ) → R with
compact support such that

sup
y∈φi (Ui )

| f̃i (y)− g̃i (y)| < ϵ

2i
.

Define gi : Ui → R by gi = g̃i ◦φi , and extend it to all of M by setting it to zero outside Ui .



Differential Geometry Lecture 6 5

Now define the global approximation by

g (x) =
∞∑

i=1
gi (x).

This sum is well-defined and smooth because the cover is locally finite–each point has a neigh-
borhood intersecting only finitely many Ui , so the sum reduces to a finite sum locally.

For the error estimate, observe that for any x ∈ M :

| f (x)− g (x)| =
∣∣∣∣∣ ∞∑
i=1

ηi (x) f (x)−
∞∑

i=1
gi (x)

∣∣∣∣∣
É

∞∑
i=1

∣∣ηi (x) f (x)− gi (x)
∣∣ .

Note that
|ηi (x) f (x)− gi (x)| = | f̃i (φi (x))− g̃i (φi (x))| < ϵ

2i
.

Therefore,

| f (x)− g (x)| <
∞∑

i=1

ϵ

2i
= ϵ,

which holds uniformly on M . □

Remark 2.4. Even in the familiar setting of Euclidean space Rn , convolution alone is insufficient
for global uniform approximation on non-compact domains. While convolution provides excel-
lent local approximations, the partition of unity technique remains essential for gluing these into
a global approximation with uniform control.

Indeed, convolution is not strictly necessary for this density theorem. An elementary alterna-
tive exists: take a locally finite open cover {Ui } of supp( f ) with each Ui sufficiently small, and
construct

g (x) =∑
i

f (xi )ηi (x)

using a subordinate partition of unity {ηi } and points xi ∈Ui . This yields uniform approximation
sup | f (x)− g (x)| < ϵ.

However, convolution provides a more robust approach. Crucially, when f is C k , the convolu-
tion approximation fδ = f ∗ρδ converges to f in the C k topology.

3. TANGENT VECTORS ON MANIFOLDS

We now extend the concept of derivative from Euclidean spaces to smooth manifolds. In
previous sections, we have studied the local and global properties of manifolds–their topology,
compactness, partitions of unity, and approximation of continuous functions. Now we turn to
studying the infinitesimal properties of manifolds, which will provide us with deeper insight
into the local behavior of manifolds and smooth maps.

The key insight comes from observing how tangent vectors act in Euclidean space: given a
vector v at a point p ∈ Rn , we can define the directional derivative of any smooth function f
in the direction v . This directional derivative operator f 7→ Dv f (p) is linear and satisfies the
product rule (Leibniz rule).

This suggests that on manifolds, we can define tangent vectors as operators on smooth func-
tions that capture this "directional derivative" behavior.
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Definition 3.1. Let p ∈ M. A derivation at p is a linear map v : C∞(M) → R satisfying

v( f g ) = f (p)v(g )+ g (p)v( f ) for all f , g ∈C∞(M).

The tangent space Tp M is the vector space of all derivations at p, and its elements are called
tangent vectors.

Lemma 3.2. Let M be a smooth manifold, p ∈ M, v ∈ Tp M, and f , g ∈C∞(M).

(1) If f is constant, then v( f ) = 0
(2) If f (p) = g (p) = 0, then v( f g ) = 0

Proof. (1) For f ≡ 1, we have v(1) = v(1 ·1) = 2v(1), so v(1) = 0
(2) Direct computation: v( f g ) = f (p)v(g )+ g (p)v( f ) = 0

□

Proposition 3.3 (Tangent vectors act locally). If f , g ∈C∞(M) agree near p ∈ M, then v( f ) = v(g )
for any v ∈ Tp M.

Proof. Let h = f − g , which vanishes in a neighborhood U of p. Choose a bump function η

supported in U with η(p) = 1. Then ηh ≡ 0, so

0 = v(ηh) = η(p)v(h)+h(p)v(η) = v(h),

hence v( f ) = v(g ). □

Definition 3.4. For a smooth map F : M → N and p ∈ M, the differential dFp : Tp M → TF (p)N is
defined by

dFp (v)( f ) = v( f ◦F ) for f ∈C∞(N ), v ∈ Tp M .

This is well-defined since f ◦F ∈C∞(M), and dFp (v) is a derivation:

dFp (v)( f g ) = v(( f g )◦F ) = v(( f ◦F )(g ◦F ))

= f (F (p))v(g ◦F )+ g (F (p))v( f ◦F )

= f (F (p))dFp (v)(g )+ g (F (p))dFp (v)( f ).

Proposition 3.5 (Properties of the differential). Let M , N ,P be smooth manifolds, F : M → N and
G : N → P smooth maps, and p ∈ M.

(1) dFp : Tp M → TF (p)N is linear
(2) d(G ◦F )p = dGF (p) ◦dFp

(3) d(1M )p = 1Tp M

(4) If F is a diffeomorphism, then dFp is an isomorphism with (dFp )−1 = d(F−1)F (p)

Proof. Properties (1) and (3) follow directly from definitions. For (2), given v ∈ Tp M and f ∈
C∞(P ):

d(G ◦F )p (v)( f ) = v( f ◦G ◦F ) = dFp (v)( f ◦G) = dGF (p)(dFp (v))( f ).

For (4), apply (2) and (3) to F ◦F−1 = 1N and F−1 ◦F = 1M . □
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